陶瓷膜分散法制备花瓣状碱式碳酸锌 |
作者:许志龙,张峰,仲兆祥,邢卫红 |
单位: 国家特种分离膜工程技术研究中心,南京工业大学膜科学技术研究所,江苏南京,210009 |
关键词: 膜反应器;纳米材料;碱式碳酸锌 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2015,35(2):7-13 |
摘要: |
将陶瓷膜与直接沉淀法相结合构成膜反应器,在室温条件下快速制备出三维花瓣状纳米结构碱式碳酸锌粉体。考察了陶瓷膜孔径、膜分散速率以及沉淀反应条件等对碱式碳酸锌粉体形貌的影响,采用XRD、SEM、BET、粒径分析仪等对粉体进行表征。结果表明,随着膜孔径和膜分散速率的减小,粉体粒径减小;粉体粒径随搅拌速率增大,先减小后增大。反应物摩尔配比R(M碳酸氢铵/M乙酸锌)及乙酸锌的初始浓度对粉体形状影响显著,当R由8变化到2时,粉体结构由块状变为条状,再到微球状;当乙酸锌浓度由0.25 mol/L增大到1.0 mol/L时,粉体结构由片平向哑铃状再到花瓣状转变。三维花瓣状结构的碱式碳酸锌粉体粒径约3 m,由厚度约20 nm纳米片组装而成,比表面积达到61.62 m2/g。 |
A direct sediment reaction was coupled with a ceramic membrane to construct a membrane reactor, for synthesis of basic zinc carbonate. Flower-like basic zinccarbonatewith nanostructures were successfully prepared at room temperaturerapidly. The effects of membrane pore size, flux and sediment reaction conditions such as stirring rate, molar ratio and initial concentration on particle size and morphology were studied.The products were characterized by SEM, XRD, BET and so on. The results showed that the particle size of basic zinc carbonatedecreased with the decrease of membrane pore size and flux. Under different molar ratio(MNH4HCO3/MZn(CH3COO)2),bulk, strip and sphere powders could be obtained. Plate, dumbbell-like and flower-like basic zinc carbonate with uniform size and morphology were prepared respectively when theconcentration of zinc acetate increased from 0.25 to 1.0mol/L. Flower-like basic zinc carbonate hierarchically structures are assembled by nanosheets of 20 nm and the diameter of the powders is about 3 μm. The specific surface area of prepared basic zinc carbonatecanreachto 61.62m2/g. |
基金项目: |
国家自然科学基金项目(21125629,21306079, 21276124),863重大项目课题(2012AA03A606),江苏省高校自然科学基金(13KJB530005) ,江苏省工业支撑项目(BE2011185) |
作者简介: |
许志龙,(1989-),男,硕士研究生,研究方向为膜分离技术;邢卫红(联系人),研究员, |
参考文献: |
[1]Zhang C, Wang Y, Bi S, et al. Preparation of MesoporousZnO Microspheres through a Membrane-Dispersion Microstructured Reactor and a Hydrothermal Treatment[J]. Industrial & Engineering Chemistry Research, 2011, 50(23): 13355-13361. [2]Chen G G, Luo G S, Yang X R, et al. Preparation of ultra-fine TiO2 particles using micro-mixing precipitation technology[J]. Journal of Inorganic Materials, 2004, 19(5): 1163-1167. [3]Chen G G, Luo G S, Yang L M, et al. Synthesis and size control of CaHPO4 particles in a two-liquid phase micro-mixing process[J].Journal of crystal growth, 2005, 279(3): 501-507. [4]Wang Y, Xu D, Sun H, et al. Preparation of pseudoboehmite with a large pore volume and a large pore size by using a membrane-dispersion microstructured reactor through the reaction of CO2 and a NaAlO2 solution[J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 3889-3894. [5]刘长友, 介万奇, 王涛等. 室温固相反应合成碱式碳酸锌[J]. 功能材料, 2012, 43(4):537-540. [6]赵风云, 刘洪杰, 赵华等. 微反应器制备纳米碱式碳酸锌研究[J]. 无机盐工业, 2009, 41(3):35-39. [7]Liu X, Zhang J, Wang L, et al. 3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors[J]. Journal of Materials Chemistry, 2011, 21(2): 349-356. [8]Jing Z, Zhan J. Fabrication and Gas‐Sensing Properties of Porous ZnONanoplates[J]. Advanced Materials, 2008, 20(23): 4547-4551. [9]Qiu Y, Chen W, Yang S. Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnOnanoplates and their application in dye-sensitized solar cells[J]. Journal of Materials Chemistry, 2010, 20(5): 1001-1006. [10]Tong Y, Cao F, Tang P, et al. Photocatalytic behaviors of porous ZnO hierarchical structures fabricated via a precursor-pyrolyzing route[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(1): 89-95. [11]Wang W, Tian Y, Wang X, et al. Ethanol sensing properties of porous ZnO spheres via hydrothermal route[J]. Journal of Materials Science, 2013, 48(8): 3232-3238. [12]Li B, Wang Y. Hierarchically assembled porous ZnO microstructures and applications in a gas sensor[J]. Superlattices and Microstructures, 2011, 49(4): 433-440. [13]Li J, Fan H, Jia X. Multilayered ZnOnanosheets with 3D porous architectures: synthesis and gas sensing application[J]. The Journal of Physical Chemistry C, 2010, 114(35): 14684-14691. [14]Lei A, Qu B, Zhou W, et al. Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres[J]. Materials Letters, 2012, 66(1): 72-75. [15]Xing Z, Geng B, Li X, et al. Self-assembly fabrication of 3D porous quasi-flower-like ZnOnanostrip clusters for photodegradation of an organic dye with high performance[J]. CrystEngComm, 2011, 13(6): 2137-2142. [16]Wang X, Liu W, Liu J, et al. Synthesis of nestlikeZnO hierarchically porous structures and analysis of their gas sensing properties[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 817-825. [17]Wang X, Cai W, Liu S, et al. ZnO hollow microspheres with exposed porous nanosheets surface: Structurally enhanced adsorption towards heavy metal ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 422: 199-205. [18]Zareie M, Gholami A, Bahrami M, et al. A simple method for preparation of micro-sized ZnO flakes[J]. Materials Letters, 2013, 91: 255-257. [19]Jia Z, Liu Z. Membrane-dispersion reactor in homogeneous liquid process[J]. Journal of Chemical Technology and Biotechnology, 2013, 88(2): 163-168. [20]李敏,王洁欣,王琦安等. 新型套管式微反应器制备碳酸钙超细颗粒[J]. 北京化工大学学报(自然科学版),2008, 35(3): 14-18. [21]Chen G G, Luo G S, Xu J H, et al. Membrane dispersion precipitation method to prepare nanopartials[J]. Powder Technology, 2004, 139(2): 180-185. [22]黄翠, 王玉军, 骆广生. 膜分散微结构反应器制备纳米氧化锌的实验及模型[J]. 化工学报, 2013, 64(11): 4246-4254. [23]Yang W, Li Q, Gao S, et al. NH4+ directed assembly of zinc oxide micro-tubes from nanoflakes[J]. Nanoscale research letters, 2011, 6(1): 1-10. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号