纳滤膜材质对高含盐体系中有机物截留性能的影响研究
作者:孙宝红, 笪晓薇, 范益群
单位: 南京工业大学 化学化工学院, 材料化学工程国家重点实验室, 南京 210009
关键词: 纳滤; 高含盐体系; 截留性能
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2015,35(2):14-19

摘要:
为获得纳滤膜材质对高含盐体系中有机物截留性能的影响规律, 采用截留分子量相近的有机纳滤膜和陶瓷纳滤膜对模拟高含盐体系中有机物的截留性能进行研究比较, 考察运行时间、盐浓度、跨膜压差、有机物浓度等因素对截留效果的影响. 结果表明, 两种纳滤膜运行30 min后截留性能即可稳定; 随着盐浓度的增加, 膜的渗透通量和膜对有机物的截留率都下降, 其中陶瓷纳滤膜对有机物的截留效果优于有机纳滤膜; 有机物浓度和跨膜压差对两种膜的截留性能影响较小. 因此, 在高含盐体系中, 截留分子量相近的陶瓷纳滤膜相比于有机纳滤膜,前者具有更大的通量和更高的有机物截留率.
 In order to obtain the law of nanofiltration membrane materials influence on the organic retention in high salinity system, the retention of organics was investigated by organic nanofiltration membrane and ceramic nanofiltration membrane with similar molecular weight cut-off(MWCO). The effects of running time, salt concentration, transmembrane pressure(TMP), organic concentration on retention of organics were discussed. The results indicated that the membrane retention properties could achieve stability after 30 minutes. The permeate flux and retention properties of organics gradually reduced with the increase of salt concentration, and retention properties of ceramic membrane was better than that of organic membrane. The organic concentration and TMP had a weak effect on retention properties of the membranes. Therefore, ceramic nanofiltration membrane has higher permeate flux and organic retention in high salinity system compared to organic nanofiltration membrane.

基金项目:
国家“863”计划课题(2012AA03A606)、教育部创新团队发展计划(IRT13070)、江苏省高校自然科学研究项目(12KJA530001)

作者简介:
孙宝红(1989-),女,安徽滁州市人,硕士,研究方向为膜分离.

参考文献:
[1]Lefebvre O, Moletta R. Treatment of organic pollution in industrial saline wastewater: a literature review[J]. Water Research, 2006, 40(20): 3671-3682.
[2]Kapdan I K, Erten B. Anaerobic treatment of saline wastewater by Halanaerobium lacusrosei[J]. Process Biochemistry, 2007, 42(3): 449-453.
[3]Koyuncu I. Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: effects of feed concentration and cross flow velocity[J]. Desalination, 2002, 143(3): 243-253.
[4]Tang C, Chen V. Nanofiltration of textile wastewater for water reuse[J]. Desalination, 2002, 143(1): 11-20.
[5]Fujioka T, Khan S J, McDonald J A, et al. Effects of membrane fouling on N-nitrosamine rejection by nanofiltration and reverse osmosis membranes[J]. Journal of Membrane Science, 2013, 427(1): 311-319.
[6]Van Gestel T, Kruidhof H, Blank D H A, et al. ZrO2 and TiO2 membranes for nanofiltration and pervaporation Part 1. Preparation and characterization of a corrosion-resistant ZrO2 nanofiltration membrane with a MWCO < 300[J]. Journal of Membrane Science, 2006, 284(1): 128-136.
[7]Bargeman G, Vollenbroek J M, Straatsma J, et al. Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention[J]. Journal of Membrane Science, 2005, 247(1): 11-20.
[8]Bouranene S, Szymczyk A, Fievet P, et al. Influence of inorganic electrolytes on the retention of polyethyleneglycol by a nanofiltration ceramic membrane[J]. Journal of membrane science, 2007, 290(1): 216-221.
[9]Luo J Q, Wan Y H. Effects of pH and salt on nanofiltration-a critical review[J]. Journal of Membrane Science, 2013, 438(1): 18-28.
[10]Bouranene S, Szymczyk A, Fievet P, et al. Effect of salts on the retention of polyethyleneglycol by a nanofiltration ceramic membrane[J]. Desalination, 2009, 240(1): 94-98.
[11]Escoda A, Fievet P, Lakard S, et al. Influence of salts on the rejection of polyethyleneglycol by an NF organic membrane: pore swelling and salting-out effects[J]. Journal of Membrane Science, 2010, 347(1): 174-182.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号