TiO2改性静电纺复合超滤膜抗污染性能的研究
作者:李洪春,王娇娜,李从举
单位: 北京服装学院材料科学与工程学院,北京 100029 ;2. 北京市服装材料研究开发与评价重点实验室,北京 100029
关键词: 静电纺;超滤;抗污染;TiO2
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2015,35(2):30-35

摘要:
膜污染是制约超滤膜广泛使用的最重要因素之一,膜污染直接影响到膜的使用寿命及膜的分离性能。本文采用静电纺丝技术制备了PET/PVA纳米纤维复合超滤膜,通过溶剂浸泡处理复合膜,将PVA纳米纤维层溶胀并交联,形成具有抗污染性能的PVA表面致密层结构,所制备的复合纳米纤维超滤膜具有水通量损失率小、通量恢复率高的优点。通过在PVA中添加不同质量分数的纳米TiO2进一步改善膜的亲水性和抗污染性能。使用死端过滤系统过滤10 ppm腐殖酸溶液,测试结果表明:复合膜的分离性能和抗污染性能在一定范围内随着TiO2的增加而增大。亲水性TiO2的添加能够进一步增强PVA的亲水性,对复合膜抗污染性能的提高有重要作用。 但是,TiO2的添加也会增大膜表面的粗糙度,不利于膜抗污染性能的提高,因此,TiO2有一个合宜的添加限度。
 Membrane fouling is one of the most important challenges faced in ultrafiltration (UF) operations . In this study , a three layers composite ultrafiltration membrane contains titanium dioxide(TiO2) was prepared by electrostatic spinning technology . Hydrophilic nano TiO2 was added in PVA by doping technology . Finally through the mixed solvent for processing , the high flux , high rejection ratio composite electrospinning ultrafiltration membrane with good antifouling property was made .

基金项目:
北京市属高校创新能力提升计划项目(no. TJSHG201310012021);国家自然科学基金项目(grant no. 21274006);国家973项目(grant no. 2010CB933501);北京市优秀人才培养资助(编号:2013D005001000003),北京服装学院科学研究青年创新基金(2014AL-21), 北京服装学院创新团队与优秀人才选拔与培养计划项目。

作者简介:
李洪春(1987-),男,山东潍坊人,硕士研究生,从事静电纺丝纳米纤维超/微滤膜方面研究,

参考文献:
[1] Baker R W. Overview of membrane science and technology[J]. Membrane Technology and Applications, Second Edition, 2004: 1-14.
[2] Iritani E. A Review on Modeling of Pore-Blocking Behaviors of Membranes During Pressurized Membrane Filtration[J]. Drying Technology, 2013, 31(2): 146-162.
[3] Kimura K, Maeda T, Yamamura H, et al. Irreversible membrane fouling in microfiltration membranes filtering coagulated surface water[J]. Journal of Membrane Science, 2008, 320(1): 356-362.
[4] Brant J A, Childress A E. Colloidal adhesion to hydrophilic membrane surfaces[J]. Journal of membrane science, 2004,241(2): 235-248.
[5] Meng H, Cheng Q, Li C. Polyacrylonitrile-based zwitterionic ultrafiltration membrane with improved anti-protein-fouling capacity[J]. Applied Surface Science, 2014, 303: 399-405.
[6] Rahimpour A, Madaeni S S. Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties[J]. Journal of Membrane Science, 2007, 305(1): 299-312.
[7] Ju H, McCloskey B D, Sagle A C, et al. Crosslinked poly (ethylene oxide) fouling resistant coating materials for oil/water separation[J]. Journal of Membrane Science, 2008, 307(2): 260-267.
[8] McVerry B T, Temple J A T, Huang X, et al. Fabrication of Low-Fouling Ultrafiltration Membranes Using a Hydrophilic, Self-Doping Polyaniline Additive[J]. Chemistry of Materials, 2013, 25(18): 3597-3602.
[9] Taniguchi M, Belfort G. Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type[J]. Journal of membrane science, 2004, 231(1): 147-157.
[10] Reddy A V R, Mohan D J, Bhattacharya A, et al. Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer: I. Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties[J]. Journal of Membrane Science, 2003, 214(2): 211-221.
[11] Chen H, Belfort G. Surface modification of poly (ether sulfone) ultrafiltration membranes by low‐temperature plasma‐induced graft polymerization[J]. Journal of Applied Polymer Science, 1999, 72(13): 1699-1711.
[12] 祝振鑫. 膜材料的亲水性, 膜表面对水的湿润性和水接触角的关系[J]. 膜科学与技术, 2014, 34(2): 1-4.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号