以天然水为原料液的正渗透过程中CTA膜表面污染物脱附研究 |
作者:杨瑞林,张新欢,董秉直,夏圣骥 |
单位: 同济大学 环境科学与工程学院 上海,200092 |
关键词: 正渗透;膜污染;天然有机物;膜通量。 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2015,35(3):37-43 |
摘要: |
选择浓缩天然水作为污染物,研究了错流过滤的正渗透膜系统处理水中有机物时,不同实验温度和错流速度下膜通量的变化;通过对被污染的膜进行洗脱,得到洗脱液,并对洗脱液进行了分析,得到污染物在正渗透膜的沉积规律。结果表明,温度对通量和膜污染影响很大,温度越高膜污染越强,膜通量下降越大;错流速度对通量和膜污染也有明显的影响,错流速度越小膜污染越严重,膜通量下降越大。膜上的污染物主要以蛋白质和氨基酸为主,该类物质主要在发射波长 320-360nm、激发波长 210-230nm的荧光区域有响应。污染物的分子量主要分布在630000Da和800Da左右。正渗透过程中CTA膜对天然有机物中的腐殖质有很强的抗污能力。 |
:Fouling of cellulose triacetate (CTA) forward osmosis (FO) membranes was studied by a cross-flow flat-sheet forward osmosis membrane system. Concentrated natural water was employed as the feed solution (FS), and a sodium chloride solution (3 mol/L) was used for the draw solution (DS). Various temperatures and cross-flow velocities were concerned. The membrane flux was calculated by recording the mass changing of the FO andthe substances absorbed on the membranes were extracted by ultrasonic oscillation. The extracted foulant was characterized by methodologies including fluorescence excitation-emission matrices (EEMs) and liquid chromatography with organic carbon detector (LC-OCD). The results showed that a higher cross-flow velocity and lower temperature benefits the anti-fouling capacity of the membrane significantly. Proteins and amino acids were the main foulants on the membrane, withthe molecular weight distributing in two levels: near 630000 Da and 800 Da. CTA membrane has a strong anti-fouling capability to humic acid substances in forward osmosis process. |
基金项目: |
国家自然科学基金,钙离子对有机物形成正渗透膜污染的影响机制及调控(51378367) |
作者简介: |
杨瑞林(1991-),男,安徽六安人,硕士,同济大学环境科学与工程学院,学生,从事正渗透水处理技术研究。 |
参考文献: |
[1] W. Guo, H.-H. Ngo, J. Li. A mini-review on membrane fouling. [J]. Bioresource Technology, 2012, 122: 27-34. [2] C. Boo, M. Elimelech, S. Hong. Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation. [J]. Journal of Membrane Science, 2013, 444: 148-156. [3] B.D. Coday, P. Xu, E.G. Beaudry, et al. The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. [J]. Desalination, 2014, 333(1): 23-35. [4] J.E. Kim, S. Phuntsho, H.K. Shon. Pilot-scale nanofiltration system as post-treatment for fertilizer-drawn forward osmosis desalination for direct fertigation. [J]. Desalination and Water Treatment, 2013, 51(31-33): 6265-6273. [5] S. Phuntsho, S. Hong, M. Elimelech, et al. Forward osmosis desalination of brackish groundwater: Meeting water quality requirements for fertigation by integrating nanofiltration. [J]. Journal of Membrane Science, 2013, 436: 1-15. [6] S. Phuntsho, S. Sahebi, T. Majeed, et al. Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process. [J]. Chemical Engineering Journal, 2013, 231: 484-496. [7] S.R.V. Castrillon, X.L. Lu, D.L. Shaffer, et al. Amine enrichment and poly(ethylene glycol) (PEG) surface modification of thin-film composite forward osmosis membranes for organic fouling control. [J]. Journal of Membrane Science, 2014, 450: 331-339. [8] D. Emadzadeh, W.J. Lau, A.F. Ismail. Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection. [J]. Desalination, 2013, 330: 90-99. [9] D. Emadzadeh, W.J. Lau, T. Matsuura, et al. A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination. [J]. Chemical Engineering Journal, 2014, 237: 70-80. [10] X.L. Lu, S.R.V. Castrillon, D.L. Shaffer, et al. In Situ Surface Chemical Modification of Thin-Film Composite Forward Osmosis Membranes for Enhanced Organic Fouling Resistance. [J]. Environmental Science & Technology, 2013, 47(21): 12219-12228. [11] P. Pardeshi, A.A. Mungray. Synthesis, characterization and application of novel high flux FO membrane by layer-by-layer self-assembled polyelectrolyte. [J]. Journal of Membrane Science, 2014, 453: 202-211. [12] T.Y. Cath, M. Elimelech, J.R. McCutcheon, et al. Standard Methodology for Evaluating Membrane Performance in Osmotically Driven Membrane Processes. [J]. Desalination, 2013, 312: 31-38. [13] S. Phuntsho, S. Hong, M. Elimelech, et al. Osmotic equilibrium in the forward osmosis process: Modelling, experiments and implications for process performance. [J]. Journal of Membrane Science, 2014, 453: 240-252. [14] M. Xie, L.D. Nghiem, W.E. Price, et al. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: Measurements, modelling and implications. [J]. Water research, 2014, 49: 265-274. [15] M. Xie, W.E. Price, L.D. Nghiem, et al. Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis. [J]. Journal of Membrane Science, 2013, 438: 57-64. [16] M.W. Ryoo, G. Seo. Improvement in capacitive deionization function of activated carbon cloth by titania modification. [J]. Water research, 2003, 37(7): 1527-1534. [17] S. Wang, D. Wang, L. Ji, et al. Equilibrium and kinetic studies on the removal of NaCl from aqueous solutions by electrosorption on carbon nanotube electrodes. [J]. Separation and Purification Technology, 2007, 58(1): 12-16. [18] B. Mi, M. Elimelech. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. [J]. Journal of Membrane Science, 2010, 348(1-2): 337-345. [19] T. Carroll, S. King, S.R. Gray, et al. The fouling of microfiltration membranes by NOM after coagulation treatment. [J]. Water research, 2000, 34(11): 2861-2868. [20] K.L. Jones, C.R. O'Melia. Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength. [J]. Journal of Membrane Science, 2000, 165(1): 31-46. [21] N.H. Lee, G. Amy, J.P. Croue, et al. Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). [J]. Water research, 2004, 38(20): 4511-4523. [22] R.V. Linares, V. Yangali-Quintanilla, Z. Li, et al. NOM and TEP fouling of a forward osmosis (FO) membrane: Foulant identification and cleaning. [J]. Journal of Membrane Science, 2012, 421: 217-224. [23] Y. Gu, Y.-N. Wang, J. Wei, et al. Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules. [J]. Water research, 2013, 47(5): 1867-1874. [24] C.Y. Tang, Q. She, W.C.L. Lay, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. [J]. Journal of Membrane Science, 2010, 354(1-2): 123-133. [25] J.R. McCutcheon, R.L. McGinnis, M. Elimelech. Desalination by ammonia-carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. [J]. Journal of Membrane Science, 2006, 278(1-2): 114-123. [26] A. Jawor, E.M.V. Hoek. Effects of feed water temperature on inorganic fouling of brackish water RO membranes. [J]. Desalination, 2009, 235(1-3): 44-57. [27] S.A. Huber, A. Balz, M. Abert, et al. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography - organic carbon detection - organic nitrogen detection (LC-OCD-OND). [J]. Water research, 2011, 45(2): 879-885. [28] A. Batsch, D. Tyszler, A. Brugger, et al. Foulant analysis of modified and unmodified membranes for water and wastewater treatment with LC-OCD. [J]. Desalination, 2005, 178(1-3): 63-72. [29] X. Zheng, M. Ernst, M. Jekel. Identification and quantification of major organic foulants in treated domestic wastewater affecting filterability in dead-end ultrafiltration. [J]. Water research, 2009, 43(1): 238-244. [30] X. Jin, A. Jawor, S. Kim, et al. Effects of feed water temperature on separation performance and organic fouling of brackish water RO membranes. [J]. Desalination, 2009, 239(1-3): 346-359. [31] R.G. Zepp, W.M. Sheldon, M.A. Moran. Dissolved organic fluorophores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. [J]. Marine Chemistry, 2004, 89(1-4): 15-36. [32] W. Chen, P. Westerhoff, J.A. Leenheer, et al. Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter. [J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [33] N.T. Hancock, P. Xu, M.J. Roby, et al. Towards direct potable reuse with forward osmosis: Technical assessment of long-term process performance at the pilot scale. [J]. Journal of Membrane Science, 2013, 445: 34-46. [34] R.V. Linares, V. Yangali-Quintanilla, Z. Li, et al. Rejection of micropollutants by clean and fouled forward osmosis membrane. [J]. Water research, 2011, 45(20): 6737-6744. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号