支撑液膜技术对金属离子的分离回收
作者:李莹雪,崔崇威 ?
单位: 哈尔滨工业大学 市政环境工程学院,黑龙江 哈尔滨 150096
关键词: 支撑液膜;稳定性;金属分离;回收
DOI号:
分类号: TQ028
出版年,卷(期):页码: 2015,35(4):89-98

摘要:
当前国民经济的突飞猛进备受世人瞩目,但在工业生产过程中产生的汞、铬、铜、铅、锌、铀、镍、镉等废液,释放到环境中将会导致水体污染和生态破坏。因此,有毒金属废液的治理迫在眉睫。支撑液膜作为分离领域回收金属离子的一项技术,本文对其构成及分离原理进行了概述,分析了导致支撑液膜不稳定的原因,并基于膜稳定性对衍生出的支撑液膜的类型进行论述。此外,概述了不同类型的支撑液膜技术在金属离子分离回收领域的应用,最后对支撑液膜的工业化应用前景进行了展望。
 
 Along with the development of national economy and modern industry, the discharge of effluent such as waste liquid of mercury, chromium, copper, lead, zinc, uranium, nickel and cadmium has become the main source of aquatic ecosystem contamination and ecological destruction. Thus, the treatment of the metal wastewater is imperative. Supported liquid membrane is a promising technology on the reuse of metal ions in separation fields. The separation mechanism of liquid membrane have been summarized and the reasons why operation instability of liquid membrane have been analyzed. Besides, the derivative technologies related to stability have been discussed. In addition, the application of supported liquid membrane technologies on separation and recovery of metal ions have been summarized, and its industrial application prospect has been forecasted.
 

基金项目:
国家环保部公益项目重金属应急污染控制(No.201209048)

作者简介:
李莹雪(1984-),女,河南省新乡市人,博士生,重金属废水的处理及资源化利用.

参考文献:
 
[1] Kislik V S. Liquid Membrane: Principles and Applications in Chemical Separations and Wastewater Treatment [M]. Beijing: Science Press, 2010.
[2] 顾忠茂. 液膜分离技术进展[J]. 膜科学与技术,2003,23(4):214-223.
[3] de Agreda D, Garcia-Diaz I, Lopez F A, etal. Supported liquid membranes technologies in metals removal from liquid effluents[J]. Rev Metal Madrid, 2011, 47 (2):146-168.
[4] de Gyves J, de San Miguel E R. Metal ion separations by supported liquid membranes[J]. Ind Eng Chem Res, 1999, 38 (6):2182-2202.
[5] Cussler E L. Membranes which pump[J]. AIChE J, 1971, 17(6):1300-1303.
[6] Baker R W, Tuttle M E, Kelly D J, Lonsdale H K. Couple transport membranes I. Copper separations[J]. J Membrane Sci, 1977, 2:213-233.
[7] Danesi P R. Separation of metal species by supported liquid membranes[J]. Sep Sci Technol, 1984-85, 19(11, 12):857-894.
[8] 王彩玲,张立志. 支撑液膜稳定性研究进展[J]. 化工进展,2007,26(7):949-956.
[9] 裴亮,姚秉华,付兴隆. 支撑液膜分离过程应用研究新进展[J]. 膜科学与技术,2009,29(3):80-87.
[10] Kocherginsky N M, Yang Q, Seelam L. Recent advances in supported liquid membrane technology[J]. Sep Purif Technol, 2007, 53 (2):171-177.
[11] Taoualit N, Hadj-Boussaad D E. Transport of silver metal ions through a liquid membrane gel using a solvating extractant (TOPO) [J]. Desalination, 2006, 193 (1-3):321-326.
[12] Nghiem L D, Mornane P, Potter I D, etal. Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs) [J]. J Membrane Sci, 2006, 281 (1-2):7-41.
[13] Yang X J, Fane A G, Bi J, etal. Stabilization of supported liquid membranes by plasma polymerization surface coating[J]. J Membrane Sci, 2000, 168 (1-2): 29-37.
[14] Molinari R, Argurio P, Pirillo E. Comparison between stagnant sandwich and supported liquid membranes in copper(II) removal from aqueous solutions: flux, stability and model elaboration[J]. J Membrane Sci, 2005, 256 (1-2): 158-168.
[15] Alguacil F J, Alonso M, Lopez F, etal. Pseudo-Emulsion Membrane Strip Dispersion (PEMSD) Pertraction of Chromium(VI) Using CYPHOS IL101 Ionic Liquid as Carrier[J].. Environ Sci Technol, 2010, 44 (19):7504-7508.
[16] He D S, Gu S X, Ma M. Simultaneous removal and recovery of cadmium(II) and CN- from simulated electroplating rinse wastewater by a strip dispersion hybrid liquid membrane (SDHLM) containing double carrier[J]. J Membr Sci, 2007, 305 (1-2):36-47.
[17] Comesana A, Rodriguez-Monsalve J, Cerpa A, etal. Non-dispersive solvent extraction with strip dispersion (NDSXSD) pertraction of Cd(II) in HCl medium using ionic liquid CYPHOS IL101[J]. Chem Eng J, 2011, 175: 228-232.
[18] 张卫东,李爱民,刘君腾等. 利用中空纤维更新液膜技术实现同级萃取-反萃的方法[P]. 中国:CN 1751767A. 2006-03-29.
[19] Chen Y, Zhang Y Y, Li X M, etal. Stability of Supported Liquid Membranes for Metal Ion Extraction: State of the Art on Membrane Materials[J]. Prog Chem, 2011, 23 (5):1033-1040.
[20] 葛道才,德里奥利. 支撑液膜分离和浓缩金属的研究–铜、锌及其混合物的分离[J]. 膜分离科学与技术,1983,3(1):1-9.
[21] Santiago-Santiago L A, Reyes-Aguilera J A, Gonzalez M P, etal. Separation of Bi(III) and Sb(III) from Cu(II) HCl/H2SO4 Mixed Media by Supported Liquid Membranes Using Cyanex 921 as Carrier[J]. Ind Eng Chem Res, 2012, 51 (46):15184-15192.
[22] Panja S, Ruhela R, Das A, etal. Carrier mediated transport of Pd(II) from nitric acid medium using Dithiodiglycolamide(DTDGA) across a supported liquid membrane (SLM) [J]. J Membrane Sci, 2014, 449: 67-73.
[23] Solangi I B, Ozcan F, Arslan G, etal. Transportation of Cr(VI) through calix[4]arene based supported liquid membrane[J]. Sep Purif Technol, 2013, 118:470-478.
[24] Rehman S U, Akhtar G, Chaudry M A, etal. Transport of Ag+ through tri-n-dodecylamine supported liquid membranes[J]. J Membrane Sci 2012, 389, 287-293.
[25] Raut D R, Mohapatra P K, Manchanda V K, etal. A highly efficient supported liquid membrane system for selective strontium separation leading to radioactive waste remediation[J]. J Membrane Sci, 2012, 390: 76-83.
[26] Chakrabarty K, Saha P, Ghoshal A K. Separation of mercury from its aqueous solution through supported liquid membrane using environmentally benign diluent[J]. J Membrane Sci, 2010, 350 (1-2):395-401.
[27] Panja S, Mohapatra P K, Tripathi S C, etal. Supported liquid membrane transport studies on Am(III), Pu(IV), U(VI) and Sr(II) using irradiated TODGA[J]. J Hazard Mater, 2012, 237:339-346.
[28] Bhattacharyya A, Mohapatra P K, Gadly T, etal. Liquid-liquid extraction and flat sheet supported liquid membrane studies on Am(III) and Eu(III) separation using 2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine as the extractant[J]. J Hazard Mater, 2011, 195: 238-244.
[29] Dinkar A K, Singh S K, Tripathi S C, etal. Carrier facilitated transport of thorium from HCl medium using Cyanex 923 in n-dodecane containing supported liquid membrane[J]. J Radioanal Nucl Ch, 2013, 298 (1):707-715.
[30] Pancharoen U, Leepipatpiboon N, Ramakul P. Innovative approach to enhance uranium ion flux by consecutive extraction via hollow fiber supported liquid membrane[J]. J Ind Eng Chem, 2011, 17 (4): 647-650.
[31] Jagdale Y D, Patwardhan A W, Shah K A, etal. Transport of strontium through a hollow fibre supported liquid membrane containing N,N,N ',N '-tetraoctyl diglycolamide as the carrier[J]. Desalination, 2013, 325: 104-112.
[32] Bhattacharyya A, Mohapatra P K, Ansari S A, etal. Separation of trivalent actinides from lanthanides using hollow fiber supported liquid membrane containing Cyanex-301 as the carrier[J]. J Membrane Sci, 2008, 312 (1-2):1-5.
[33] Yang X J, Fane A G, Pin C. Separation of zirconium and hafnium using hollow fibers - Part I. Supported liquid membranes[J]. Chem Eng J, 2002, 88 (1-3):37-44.
[34] Suren S, Wongsawa T, Pancharoen U, etal. Uphill transport and mathematical model of Pb(II) from dilute synthetic lead-containing solutions across hollow fiber supported liquid membrane[J]. Chem Eng J, 2012, 191: 503-511.
[35] Vernekar P V, Jagdale Y D, Patwardhan A W, etal. Transport of cobalt(II) through a hollow fiber supported liquid membrane containing di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the carrier[J]. Chem Eng Res Des, 2013, 91 (1):141-157.
[36] Kandwal P, Dixit S, Mukhopadhyay S, etal. Mass transport modeling of Cs(I) through hollow fiber supported liquid membrane containing calix-[4]-bis(2,3-naptho)-crown-6 as the mobile carrier[J]. Chem Eng J, 2011, 174 (1): 110-116.
[37] Yang Q, Kocherginsky N M., Copper removal from ammoniacal wastewater through a hollow fiber supported liquid membrane system: Modeling and experimental verification[J]. J Membrane Sci, 2007, 297 (1-2):121-129.
[38] Pancharoen U, Wongsawa T, Lothongkum A W. A Reaction Flux Model for Extraction of Cu(II) with LIX84I in HFSLM[J]. Sep Sci Technol, 2011, 46 (14): 2183-2190.
[39] Suren S, Pancharoen U, Thamphiphit N, etal. A Generating Function applied on a reaction model for the selective separation of Pb(II) and Hg(II) via HFSLM[J]. J Membrane Sci, 2013, 448:23-33.
[40] Chaturabul S, Wongkaew K, Pancharoen U. Selective Transport of Palladium through a Hollow Fiber Supported Liquid Membrane and Prediction Model Based on Reaction Flux[J]. Sep Sci Technol, 2013, 48 (1): 93-104.
[41] Wannachod T, Leepipatpiboon N, Pancharoen U, etal. Separation and mass transport of Nd(III) from mixed rare earths via hollow fiber supported liquid membrane: Experiment and modeling[J]. Chem Eng J, 2014, 248: 158-167.
[42] Agarwal S, Reis M T A, Ismael M R C, etal. Zinc extraction with Ionquest 801 using pseudo-emulsion based hollow fibre strip dispersion technique[J]. Sep Purif Technol, 2014, 127:149-156.
[43] Gonzalez R, Cerpa A, Alguacil F J. Nickel(II) removal by mixtures of Acorga M5640 and DP8R in pseudo-emulsion based hollow fiber with strip dispersion technology[J]. Chemosphere, 2010, 81 (9):1164-1169.
[44] Alguacil F I, Alonso M, Lopez F A, etal. Dispersion-Free Solvent Extraction of Cr(VI) from Acidic Solutions Using Hollow Fiber Contactor[J]. Environ Sci Technol, 2009, 43 (20):7718-7722.
[45] Sonawane J V, Pabby A K, Sastre A M. Pseudo-Emulsion Based Hollow Fiber Strip Dispersion: A Novel Methodology for Gold Recovery[J]. Aiche Journal, 2008, 54(2):453-463.
[46] Mondal A, Ghosh S, Bhowal A. Vanadium Extraction using Pseudo-Emulsion Based Hollow-Fiber with Strip Dispersion Technique[J]. Sep Sci Technol, 2013, 48 (6): 877-883.
[47] Ho W S W. Removal and recovery of one or more metals involves using a combination of supported liquid membrane and strip dispersion process [P]. US6350419-B1. 2002-02-26.
[48] Ho W S W. Removal and recovery of radionuclides (e.g. strontium) or metals (e.g. calcium) from waste water and process streams, involves using combination of supported liquid membrane and strip dispersion[P]. US6328782-B1. 2001-12-11.
[49] Ho W S W. Recovery and removal of chromium from feed solution involves treating low concentration solution with supported liquid membrane to produce concentrated solution and treated solution which is recycled to feed solution[P]. US6171563-B1.2001-01-09.
[50] Dietz M L, Dzielawa J A. Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: implications for the 'greenness' of ionic liquids as diluents in liquid-liquid extraction[J]. Chem Commun, 2001, (20):2124-2125.
[51] Visser A E, Swatloski R P, Reichert W M, etal. Traditional extractants in nontraditional solvents: Groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids[J]. Ind Eng Chem Res, 2000, 39 (10): 3596-3604.
[52] Nakashima K, Kubota F, Maruyama T, etal. Feasibility of ionic liquids as alternative separation media for industrial solvent extraction processes[J]. Ind Eng Chem Res, 2005, 44 (12):4368-4372.
[53] Alguacil F J, Alonso M, Lopez F A, etal. Pseudo-emulsion based hollow fiber with strip dispersion pertraction of iron(III) using (PJMTH+)2(SO42-) ionic liquid as carrier[J]. Chem Eng J, 2010, 157 (2-3):366-372.
[54] Miguel E R D, Vital X, de Gyves J. Cr(VI) transport via a supported ionic liquid membrane containing CYPHOS IL101 as carrier: System analysis and optimization through experimental design strategies[J]. J Hazard Mater, 2014, 273:253-262.
[55] Fortunato R, Afonso C A M, Reis M A M, etal. Supported liquid membranes using ionic liquids: study of stability and transport mechanisms[J]. J Membrane Sci, 2004, 242 (1-2):197-209.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号