正渗透浓差极化与膜污染特征的研究进展
作者:薛念涛,潘涛
单位: 北京市环境保护科学研究院 国家城市环境污染控制工程技术研究中心,北京 100037
关键词: 正渗透;浓差极化;膜污染;研究进展
DOI号:
分类号: X703.1
出版年,卷(期):页码: 2015,35(5):109-113

摘要:
正渗透(Forward osmosis, FO)是国际上广泛关注的新型膜分离技术,能耗低、水回收率高,其分离的驱动力来源于原料液和驱动液之间自然存在的渗透压差。浓差极化与膜污染是导致水通量下降的两个主要因素。增加错流流速可显著减少外部浓差极化对FO性能的负面影响,内部浓差极化只能通过改善膜结构和膜性能来减缓。膜污染是FO的技术障碍之一。产生膜污染的机理有膜表面吸附与滤饼层(凝胶层)形成。膜污染物质可分为溶解性无机物、胶体和悬浮物、有机物及微生物。FO膜的性质、原料液性质、膜的置向、操作条件均是膜污染的影响因素。控制膜污染的方法主要有预处理、流体力学方法、清洗、改变膜的结构等。研究膜污染机理及控制方法可促进FO技术的开发与应用。
 
 Forward osmosis (FO), a novel membrane separation technology with low energy consumption and high water recovery, has been drawn attention around the world. Its driving force for separation is natural pressure difference existing between the feed solution and draw solution. Concentration polarization and membrane fouling are two main factors resulting in decrease in water flux. Increase in cross-flow velocity would significantly reduce negative influence of external concentration polarization on FO performance. Internal concentration polarization could only be reduced through improvement on membrane structure and membrane performance. Membrane fouling is one of the technical barriers of FO. Mechanism of membrane fouling includes adsorption on membrane surface and cake layer (gel layer) formation. Membrane foulants include dissolved inorganic matter, colloid and suspended matter, organic matter, and microorganisms. Properties of FO membrane and feed solution, membrane orientation, and operating conditions are the affecting factors of membrane fouling. The methods for fouling control include pretreatment, hydraulic methods, cleaning, and modification of membrane structure, etc. Research on mechanisms of membrane fouling and its control methods can promote the development and application of FO technology.
 

基金项目:
北京市环境保护科学研究院科技基金(2014-A-08),“水体污染控制与治理”重大专项(2012ZX07203-001-01)

作者简介:
第一作者简介:薛念涛(1969-),男,山东沂南人,博士,高级工程师,从事污水、固废、生物脱臭研究,xueniantao@163.com. *通讯作者,pantao@cee.cn

参考文献:
[1] Werner C M, Logan B E, Saikaly P E, et al. Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell[J]. J Membrane Sci, 2013, 428: 116-122.
[2] Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments[J]. J Membrane Sci, 2006, 281(1–2): 70-87.
[3] Mcginnis R L, Elimelech M. Energy requirements of ammonia–carbon dioxide forward osmosis desalination[J]. Desalination, 2007, 207(1–3): 370-382.
[4] Cath T Y, Elimelech M, Mccutcheon J R, et al. Standard methodology for evaluating membrane performance in osmotically driven membrane processes[J]. Desalination, 2013, 312(0): 31-38.
[5] Mccutcheon J R, Mcginnis R L, Elimelech M. Desalination by ammonia-carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance[J]. J Membrane Sci, 2006, 278(1-2): 114-123.
[6] Elimelech M, Phillip W A. The future of seawater desalination: Energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
[7] Mcginnis R L, Elimelech M. Global challenges in energy and water supply: The promise of engineered osmosis[J]. Environ Sci Technol, 2008, 42(23): 8625-8629.
[8] Drioli E, Cassano A. 9 - Advances in membrane-based concentration in the food and beverage industries: Direct osmosis and membrane contactors[M]. Separation, extraction and concentration processes in the food, beverage and nutraceutical industries, Rizvi S S H, Woodhead Publishing, 2013, 244-283.
[9] Cath T Y, Gormly S, Beaudry E G, et al. Membrane contactor processes for wastewater reclamation in space: I. Direct osmotic concentration as pretreatment for reverse osmosis[J]. J Membrane Sci, 2005, 257(1–2): 85-98.
[10] Cath T Y, Adams D, Childress A E. Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater[J]. J Membrane Sci, 2005, 257(1-2): 111-119.
[11] 王湛. 膜分离技术基础[M]. 北京: 化学工业出版社, 2000.
[12] Qin J, Liberman B, Kekre K A. Direct osmosis for reverse osmosis fouling control: principles, applications and recent developments[J]. The Open Chemical Engineering Journal, 2009, 3(1): 8-16.
[13] Lee S, Boo C, Elimelech M, et al. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO)[J]. J Membrane Sci, 2010, 365(1–2): 34-39.
[14] Mi B, Elimelech M. Chemical and physical aspects of organic fouling of forward osmosis membranes[J]. J Membrane Sci, 2008, 320(1–2): 292-302.
[15] Lu X, Romero-Vargas Castrillón S, Shaffer D L, et al. In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance[J]. Environ Sci Technol, 2013: 12219-12228.
[16] 刘蕾蕾. 三醋酸纤维素正渗透膜的制备与性能研究[D]. [学位论文]: 中国海洋大学, 2010.
[17] Achilli A, Cath T Y, Marchand E A, et al. The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes[J]. Desalination, 2009, 239(1-3): 10-21.
[18] Zhang H, Cheng S, Yang F. Use of a spacer to mitigate concentration polarization during forward osmosis process[J]. Desalination, 2014, 347(0): 112-119.
[19] Mccutcheon J R, Elimelech M. Modeling water flux in forward osmosis: Implications for improved membrane design[J]. Aiche J, 2007, 53(7): 1736-1744.
[20] Gray G T, Mccutcheon J R, Elimelech M. Internal concentration polarization in forward osmosis: Role of membrane orientation[J]. Desalination, 2006, 197(1-3): 1-8.
[21] Mccutcheon J R, Elimelech M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J]. J Membrane Sci, 2006, 284(1-2): 237-247.
[22] Tan C H, Ng H Y. Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations[J]. J Membrane Sci, 2008, 324(1-2): 209-219.
[23] Zhang S, Wang K Y, Chung T, et al. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer[J]. J Membrane Sci, 2010, 360(1-2): 522-535.
[24] 马艳杰. 正渗透膜生物反应器膜污染行为研究[D]. [学位论文]: 大连理工大学, 2012.
[25] Romero-Vargas Castrill N S, Lu X, Shaffer D L, et al. Amine enrichment and poly(ethylene glycol) (PEG) surface modification of thin-film composite forward osmosis membranes for organic fouling control[J]. J Membrane Sci, 2014, 450: 331-339.
[26] Tang C Y. Effect of flux and feedwater composition on fouling of reverse osmosis and nanofiltration membranes by humic acid[D]: Stanford University, 2007.
[27] 李志能. 正渗透膜生物反应器污水处理效果及膜污染特性研究[D]. [学位论文]: 哈尔滨工业大学, 2013.
[28] Zhu X, Elimelech M. Colloidal fouling of reverse osmosis membranes:  Measurements and fouling mechanisms[J]. Environ Sci Technol, 1997, 31(12): 3654-3662.
[29] Boo C, Lee S, Elimelech M, et al. Colloidal fouling in forward osmosis: Role of reverse salt diffusion[J]. J Membrane Sci, 2012, 390–391(0): 277-284.
[30] Kim Y, Elimelech M, Shon H K, et al. Combined organic and colloidal fouling in forward osmosis: Fouling reversibility and the role of applied pressure[J]. J Membrane Sci, 2014, 460(In press): 206-212.
[31] Tang C Y, Kwon Y, Leckie J O. Fouling of reverse osmosis and nanofiltration membranes by humic acid—Effects of solution composition and hydrodynamic conditions[J]. J Membrane Sci, 2007, 290(1–2): 86-94.
[32] 刘彩虹. 正渗透工艺特性及膜污染特征研究[D]. [学位论文]: 哈尔滨工业大学, 2013.
[33] Lay W C L, Zhang J, Tang C, et al. Analysis of salt accumulation in a forward osmosis system[J]. Sep Sci Technol, 2012, 47(13): 1837-1848.
[34] Mi B, Elimelech M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents[J]. J Membrane Sci, 2010, 348(1–2): 337-345.
[35] Mi B, Elimelech M. Gypsum scaling and cleaning in forward osmosis: Measurements and mechanisms[J]. Environ Sci Technol, 2010, 44(6): 2022-2028.
[36] Tiraferri A, Kang Y, Giannelis E P, et al. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: Fouling behavior and antifouling mechanisms[J]. Environ Sci Technol, 2012, 46(20): 11135-11144.
[37] 张高旗, 刘海宁, 张凯松. 正渗透处理生活污水过程中的膜污染研究[J]. 中国环境科学, 2013, 33(12): 2170-2175.
[38] Azari S, Zou L. Using zwitterionic amino acid L-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance[J]. J Membrane Sci, 2012, 401–402(0): 68-75.
[39] Ng H Y, Tang W, Wong W S. Performance of forward (direct) osmosis process:  Membrane structure and transport phenomenon[J]. Environ Sci Technol, 2006, 40(7): 2408-2413.
[40] Mccutcheon J R, Elimelech M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes[J]. J Membrane Sci, 2008, 318(1–2): 458-466.
[41] Lee J, Kim B, Hong S. Fouling distribution in forward osmosis membrane process[J]. J Environ Sci, 2014, 26(6): 1348-1354.
[42] Millat A. Effect of ionic strength and salt type on humic acid fouling of forward osmosis membranes[D]: The Ohio State University, 2011.
[43] 佘乾洪. 超滤和正渗透过程中有机物对膜污染的研究[D]. [学位论文]: 上海交通大学, 2009.
[44] Aydiner C, Topcu S, Tortop C, et al. Interrelated analysis of performance and fouling behaviors in forward osmosis by ex-situ membrane characterizations[J]. Scanning Electron Microscopy, 2012.
[45] Cornelissen E R, Harmsen D, de Korte K F, et al. Membrane fouling and process performance of forward osmosis membranes on activated sludge[J]. J Membrane Sci, 2008, 319(1-2): 158-168.
[46] Xie M, Nghiem L D, Price W E, et al. Impact of organic and colloidal fouling on trace organic contaminant rejection by forward osmosis: Role of initial permeate flux[J]. Desalination, 2014, 336(0): 146-152.
[47] Goosen M, Sablani S S, Al Hinai H, et al. Fouling of reverse osmosis and ultrafiltration membranes: A critical review[J]. Sep Sci Technol, 2005, 39(10): 2261-2297.
[48] Zou S, Wang Y, Wicaksana F, et al. Direct microscopic observation of forward osmosis membrane fouling by microalgae: Critical flux and the role of operational conditions[J]. J Membrane Sci, 2013, 436: 174-185.
[49] 李文凤. 纳滤膜水处理过程中膜污染分析及膜过滤特性研究[D]. [学位论文]: 西安建筑科技大学, 2008.
[50] Boo C, Elimelech M, Hong S. Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation[J]. J Membrane Sci, 2013, 444: 148-156.
[51] Seidel A, Elimelech M. Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: Implications for fouling control[J]. J Membrane Sci, 2002, 203(1–2): 245-255.
[52] Yoon H, Baek Y, Yu J, et al. Biofouling occurrence process and its control in the forward osmosis[J]. Desalination, 2013, 325: 30-36.
[53] Choi Y, Kim S, Jeong S, et al. Application of ultrasound to mitigate calcium sulfate scaling and colloidal fouling[J]. Desalination, 2014, 336(0): 153-159.
[54] Cath T Y, Hancock N T, Lundin C D, et al. A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water[J]. J Membrane Sci, 2010, 362(1-2): 417-426.
[55] Nguyen A, Azari S, Zou L. Coating zwitterionic amino acid L-DOPA to increase fouling resistance of forward osmosis membrane[J]. Desalination, 2013, 312: 82-87.
[56] Qi S, Qiu C Q, Zhao Y, et al. Double-skinned forward osmosis membranes based on layer-by-layer assembly—FO performance and fouling behavior[J]. J Membrane Sci, 2012, 405-406: 20-29.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号