燃料电池用阴离子交换膜:基于优化离子电导率的结构调控研究
作者:林陈晓  张秋根  朱爱梅  刘庆林
单位: 厦门大学 化学化工学院,厦门361005
关键词: 燃料电池;阴离子交换膜;结构;性能
DOI号:
分类号: O632.7
出版年,卷(期):页码: 2015,35(5):102-108

摘要:
燃料电池具有能量密度大、转化率高、低操作温度、环境友好等优点,有望成为新能源技术中最具应用前景的绿色能源之一。燃料电池用阴离子交换膜具有分隔燃料与氧化剂并传导OH-的功能,是碱性燃料电池的关键部件。阴离子交换膜在近几十年迅速发展,但仍处于初始阶段,普遍存在离子电导率低的问题。本文总结了影响阴离子交换膜离子电导率的因素,重点介绍优化离子电导率的结构调控,分析了微相分离结构与离子电导率的关系,最后提出在研究过程出现的问题。
 
Fuel cells can be considered as one of the most potential green power due to their high power density, high energy efficiency, low operation temperature, environmental friendliness etc. As a key component of alkaline fuel cells, anion exchange membranes (AEMs) take the function of separating fuels and oxidant and transporting the hydroxide ion from the cathode to the anode. AEMs were developed rapidly in the recent several decades, but still at an outset stage. The critical issue associated with AEMs is insufficient ionic conductivity under alkaline conditions. In this paper, the influence factors on the ionic conductivity of AEMs were summarized. Some research progresses on the structure control for optimizing the ionic conductivity were described and the relationship between microphase separation and ionic conductivity were also analyzed. Finally, the problems existed in the present research and the new trend in the future was pointed out.
 

基金项目:
国家自然科学基金(21376194)

作者简介:
林陈晓(1989- ),男,浙江瑞安人,在读博士生,研究方向为功能膜材料的合成.

参考文献:
[1]衣宝廉. 燃料电池现状与未来[J]. 电源技术, 1998, 22(5): 216-221.
[2]衣宝廉. 燃料电池的原理, 技术状态与展望[J]. 电池工业, 2003, 8(1): 16-22.
[3]胡群辉. 碱性燃料电池用多氟聚噁二唑芳醚阴离子交换膜的制备与表征[D]. 湘潭: 湘潭大学, 2012, 3-5.
[4]Mei Wenhai, Lu Changli, Yang Jingling, et al. Anion exchange membranes by bromination of benzylmethyl-containing poly (fluorene ether sulfone)s [J]. RSC Advances, 2014, 4, 27502-27509.
[5]伍艳辉, 张海峰, 谭惠芬, 等. 季铵化壳聚糖-聚乙烯醇阴离子交换膜的性能[J]. 膜科学与技术, 2011, 31(1): 41-46.
[6]于景荣, 邢丹敏, 刘富强, 等. 燃料电池用质子交换膜的研究进展[J]. 电化学, 2001, 7(4): 385-395.
[7]Xu Peiyu, Guo Tianyi, Zhao Chunhui, et al. Anion exchange membranes based on poly (vinyl alcohol) and quaternized polyethyleneimine for direct methanol fuel cells[J]. Journal of Applied Polymer Science, 2013, 128(6): 3853-3860.
[8]Yan Jingling, Hickner MA. Anion exchange membranes by bromination of benzylmethyl-containing poly (sulfone)s [J]. Macromolecules, 2010, 43(5): 2349-2356.
[9]Liu Guoshun, Shang Yuming, Xie Xiaofeng, et al. Synthesis and characterization of anion exchange membranes for alkaline direct methanol fuel cells [J]. International Journal of Hydrogen Energy, 2012, 37(1): 848-853.
[10]Yan Xiaoming, He Gaohong, Gu Shuang, et al. Quaternized poly (ether ether ketone) hydroxide exchange membranes for fuel cells [J]. Journal of Membrane Science, 2011, 375(1): 204-211.
[11]Wang Yanjie, Qiao Jinli, Baker R, et al. Alkaline polymer electrolyte membranes for fuel cell applications [J]. Chemical Society Reviews, 2013, 42(13): 5768-5787.
[12]Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review [J]. Journal of Membrane Science, 2011, 377(1): 1-35.
[13]Xiong Ying, Liu Qinglin, Zhang Qiugen, et al. Synthesis and characterization of cross-linked quaternized poly (vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells [J]. Journal of Power Sources, 2008, 183(2): 447-453.
[14]Sun Hongcheng, Zhang Gang, Liu Zhongguo, et al. Self-crosslinked alkaline electrolyte membranes based on quaternary ammonium poly (ether sulfone) for high-performance alkaline fuel cells [J]. International Journal of Hydrogen Energy, 2012, 37(12): 9873-9881.
[15]Zarrin H, Wu J, Fowler M, et al. High durable PEK-based anion exchange membrane for elevated temperature alkaline fuel cells [J]. Journal of Membrane Science, 2012, 394: 193-201.
[16]Xiong Ying, Fang Jun, Zeng Qinghua, et al. Preparation and characterization of cross-linked quaternized poly (vinyl alcohol) membranes for anion exchange membrane fuel cells [J]. Journal of Membrane Science, 2008, 311(1): 319-325.
[17]Ran Jin, Wu Liang, Xu Tongwen. Enhancement of hydroxide conduction by self-assembly in anion conductive comb-shaped copolymers [J]. Polymer Chemistry, 2013, 4(17): 4612-4620.
[18]Li Nanwen, Yan Tingzi, Li Zheng, et al. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes [J]. Energy & Environmental Science, 2012, 5: 7888-7892.
[19]潘婧. 燃料电池用碱性聚合物电解质研究[D]. 武汉: 武汉大学, 2012, 62-70.
[20]Li Qing, Liu Lei, Miao Qingqing, et al. Hydroxide-conducting polymer electrolyte membranes from aromatic ABA triblockcopolymers [J]. Polymer Chemistry, 2014, 5(7): 2208-2213.
[21]Li Xiuhua, Liu Qunfang, Yu Yingfeng, et al. Synthesis and properties of multiblockionomers containing densely functionalized hydrophilic blocks for anion exchange membranes [J]. Journal of Membrane Science, 2014, 467: 1-12.
[22]Wang Lizhu, Hickner MA. Low-temperature crosslinking of anion exchange membranes [J]. Polymer Chemistry, 2014, 5(8): 2928-2935.
[23]Zhao Yun, Yu Hongmei, Yang Donglei, et al. High-performance alkaline fuel cells using crosslinked composite anion exchange membrane[J]. Journal of Power Sources, 2013, 221: 247-251.
[24]Lu Wangting, Shao ZhiGang, Zhang Geng, et al. Crosslinked poly (vinylbenzyl chloride) with a macromolecular crosslinker for anion exchange membrane fuel cells [J]. Journal of Power Sources, 2014, 248: 905-914.
[25]Wang Junjun, He Gaohong, Wu Xuemei, et al. Crosslinked poly (ether ether ketone) hydroxide exchange membranes with improved conductivity [J]. Journal of Membrane Science, 2014, 459: 86-95.
[26]Wu Xuemei, Chen Wanting, Yan Xiaoming, et al. Enhancement of hydroxide conductivity by di-quaternization strategy for poly (ether ether ketone) based anion exchange membranes [J]. Journal of Materials Chemistry A, 2014, 2, 12222-12231.
[27]Mauritz KA, Moore RB. State of understanding of Nafion[J]. Chemical reviews, 2004, 104(10): 4535-4586.
[28]Carta M, Croad M, Jansen JC, et al. Synthesis of cardo-polymers using Tröger's base formation [J]. Polymer Chemistry, 2014, 5(18): 5255-5261.
[29]Tanaka M, Koike M, Miyatake K, et al. Anion conductive aromatic ionomers containing fluorenylgroups[J]. Macromolecules, 2010, 43(6): 2657-2659.
[30]Tanaka M, Koike M, Miyatake K, et al. Synthesis and properties of anion conductive ionomers containing fluorenyl groups for alkaline fuel cell applications [J]. Polymer Chemistry, 2011, 2(1): 99-106.
[31]Miyatake K, Bae B, Watanabe M. Fluorene-containing cardo polymers as ion conductive membranes for fuel cells [J]. Polymer Chemistry, 2011, 2:1919-1929.
[32]Hibbs MR, Hickner MA, Alam TM, et al. Transport properties of hydroxide and proton conducting membranes [J]. Chemistry of Materials, 2008, 20(7): 2566-2573.
[33]Xiong Ying, Liu Qinglin, Zeng Qinghua. Quaternizedcardopolyetherketone anion exchange membrane for direct methanol alkaline fuel cells [J]. Journal of Power Sources, 2009, 193(2): 541-546.
[34]Singh AK, Pandey RP, Shahi VK. Fluorenyl phenolphthalein groups containing a multi-block copolymer membrane for alkaline fuel cells [J]. RSC Advances, 2014, 4(42): 22186-22193.
[35]徐帅. 用于直接甲醇燃料电池的新型侧链型阴离子交换膜材料的制备与性能研究[D]. 长春: 吉林大学, 2013, 26-36.
[36]Xu Shuai, Zhang Gang, Zhang Yang, et al. Synthesis and properties of a novel side-chain-type hydroxide exchange membrane for direct methanol fuel cells (DMFCs) [J]. Journal of Power Sources, 2012, 209: 228-235.
[37]Varcoe JR, Atanassov P, Dekel DR, et al. Anion-exchange membranes in electrochemical energy systems [J]. Energy & Environmental Science, 2014, 7(10): 3135-3191.
[38]Mohanty AD, Lee YB, Zhu L, et al. Anion exchange fuel cell membranes prepared from C–H borylation and Suzuki coupling reactions[J]. Macromolecules, 2014, 47(6): 1973-1980.
[39]Pan Jing, Chen Chen, Li Yao, et al. Constructing ionic highway in alkaline polymer electrolytes [J]. Energy & Environmental Science, 2014, 7(1): 354-360.
[40]Zhang Qiang, Zhang Qifeng, Wang Junjun, et al. Synthesis and alkaline stability of novel cardo poly (aryl ether sulfone) s with pendent quaternary ammonium aliphatic side chains for anion exchange membranes [J]. Polymer, 2010, 51(23): 5407-5416.
[41]Li Nanwen, LengYongjun, Hickner MA, et al. Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells[J]. Journal of the American Chemical Society, 2013, 135(27): 10124-10133.
[42]Li Nanwen, Wang Lizhu, Hickner MA. Cross-linked comb-shaped anion exchange membranes with high base stability [J]. Chemical Communications, 2014, 50: 4092-4095.
[43]Zhang Zhenghui, Wu Liang, Varcoe J, et al. Aromatic polyelectrolytes via polyacylation of pre-quaternized monomers for alkaline fuel cells [J]. Journal of Materials Chemistry A, 2013, 1(7): 2595-2601.
[44]Li Qing, Liu Lei, Miao Qingqing, et al. A novel poly (2, 6-dimethyl-1, 4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes [J]. Chemical Communications, 2014, 50(21): 2791-2793.
[45]Pan Jing, Li Yao, Han Junjun, et al. A strategy for disentangling the conductivity–stability dilemma in alkaline polymer electrolytes [J]. Energy & Environmental Science, 2013, 6(10): 2912-2915.
[46]Chen Dongyang, Wang Shuanjin, Xiao Min, et al. Novel polyaromatic ionomers with large hydrophilic domain and long hydrophobic chain targeting at highly proton conductive and stable membranes[J]. Journal of Materials Chemistry, 2011, 21(32): 12068-12077.
[47]Han Guanglu, Xu Peiyu, Zhou Ke, et al. Fluorene-containing poly (arylene ether sulfone) block copolymers: Synthesis, characterization and application [J]. Journal of Membrane Science, 2014, 464: 72-79.
[48]杨慧. 燃料电池用聚醚砜类阴离子交换膜的制备及性能研究[D]. 南京: 南京理工大学, 2013, 11.
[49]Tanaka M, Fukasawa K, Nishino E, et al. Anion conductive block poly (arylene ether)s: synthesis, properties, and application in alkaline fuel cells[J]. Journal of the American Chemical Society, 2011, 133(27): 10646-10654.
[50]Xu Peiyu, Zhou Ke, Han Guanglu, et al. Effect of fluorene groups on the properties of multiblock poly (arylene ether sulfone) s-based anion-exchange membranes[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6776-6785.
[51]Yang Y, Holdcroft S. Synthetic strategies for controlling the morphology of proton conducting polymer membranes [J]. Fuel Cells, 2005, 5(2): 171-186.
[52]Hou Hongying, Sun Gongquan, He Ronghuan, et al. Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell [J]. Journal of Power Sources, 2008, 182(1): 95-99.
[53]程珊珊. 燃料电池用碱性阴离子交换膜的研究进展[J]. 广东化工, 2014, 41(7): 98-99.
[54]Xing B, Savadogo O. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI)[J]. Electrochemistry Communications, 2000, 2(10): 697-702.
[55]Yang Chunchen. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC [J]. Journal of Membrane Science, 2007, 288(1): 51-60.
[56]Yang Chunchen, Chiu SJ, ChienWenchen. Development of alkaline direct methanol fuel cells based on crosslinked PVA polymer membranes [J]. Journal of Power Sources, 2006, 162(1): 21-29.
[57]Qiao Jinli, Fu Jing, Lin Rui, et al. Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability [J]. Polymer, 2010, 51(21): 4850-4859.
[58]Yang Chunchen, Lin CT, Chiu SJ. Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application [J]. Desalination, 2008, 233(1): 137-146.
[59]Lue SJ, Mahesh KPO, Wang WT, et al. Permeant transport properties and cell performance of potassium hydroxide doped poly (vinyl alcohol)/fumed silica nanocomposites [J]. Journal of Membrane Science, 2011, 367(1): 256-264.
[60]Zhao ChunHui, Gong Yi, Liu Qinglin, et al. Self-crosslinked anion exchange membranes by bromination of benzylmethyl-containing poly (sulfone) s for direct methanol fuel cells [J]. International Journal of Hydrogen Energy, 2012, 37(15): 11383-11393.
[61]Price SC, Ren Xiaoming, Jackson AC, et al. Bicontinuous alkaline fuel cell membranes from strongly self-segregating block copolymers [J]. Macromolecules, 2013, 46(18): 7332-7340.
[62]Ren Xiaoming, Price SC, Jackson AC, et al. Highly conductive anion exchange membrane for high power density fuel-cell performance [J]. ACS Applied Materials & Interfaces, 2014, 6(16): 13330-13333.
[63]Xu Peiyu, Zhou Ke, Han Guanglu, et al. Fluorene-containing poly (arylene ether sulfone) s as anion exchange membranes for alkaline fuel cells[J]. Journal of Membrane Science, 2014, 457: 29-38.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号