浸没式中空纤维膜过滤点通量分布数学模拟 |
作者:李建新1,李贤辉,王虹1,何本桥1,王捷1,张宏伟1, 李继香2 |
单位: 1. 天津工业大学 省部共建分离膜与膜过程国家重点实验室 天津 300387 |
关键词: 过滤数学模型;浸没式中空纤维膜;点通量分布;动量守恒;质量守恒 |
DOI号: |
分类号: TQ028.5 |
出版年,卷(期):页码: 2015,35(5):1-5 |
摘要: |
本文根据质量和动量守恒原理,考虑纤维膜径向跨膜流动对流动阻力影响,构建出基于完全质量和动力守恒的中空纤维膜过滤点通量分布流体力学数学模型,并应用该模型研究了操作通量和纤维膜外形结构(内外径、长度、固有阻力)对局部过滤行为影响规律。结果发现,中空纤维膜在一定操作条件下存在一个有效工作长度或区域。并且,点通量分布不均匀程度随着纤维膜长度、操作通量和膜固有阻力的增加而增加,但随纤维膜内径减小而增加。 |
A filtration mathematical model was successfully developed by complete mass balance and momentum balance to predict the local flux distribution along fiber. The effect of radial permeate flow on flow resistance was taken into consideration in the model. The effects of fiber length, inside diameter, average operating flux and membrane intrinsic resistance on local flux distribution were investigated using this model. The simulated results showed that there existed an effective working length of the submerged hollow fiber membrane at certain operating conditions. Furthermore, it was also found that the asymmetry of local flux distribution increased with the increase of average operating flux, fiber length and membrane intrinsic resistance, whereas it decreased with an increase in fiber inner diameter. This modeling plays a theoretical foundation for the optimizing and operating of hollow fiber membrane module. |
基金项目: |
国家自然科学基金(51408588); 教育部长江学者创新团队发展计划(IRT13084) |
作者简介: |
李贤辉(1986-),男,河北邯郸人,博士研究生,主要从事中空纤维膜污染机理和膜组件流体力学等方面研究。 |
参考文献: |
[1]Carroll T, Booker N A. Axial features in the fouling of hollow-fiber membrane [J]. J. Membr. Sci., 2000, 168(1-2): 203–212. [2]Chang S, Fane A G. The effect of fibre diameter on filtration and flux distribution-relevance to submerged hollow fibre modules [J]. J. Membr. Sci., 2001, 184(2): 221–231. [3]Liu L Y, Ding A W, Lu Y, Ma R Y. Modeling the bubbling enhanced microfiltration for submerged hollow fiber membrane module [J]. Desalination. 2010(1-3), 256: 77–83. [4]Li X H, Li J X, Wang J, Wang H, He B Q, Zhang H W, Guo W S, Ngo H H, Experimental investigation of local flux distribution and fouling behavior in double-end and dead-end submerged hollow fiber membrane modules [J]. J. Membr. Sci., 2014, 453, 18–26. [5]李贤辉. 中空纤维膜污染在线监测及过滤流体力学数学模型构建 [D]. 博士学位论文, 天津工业大学, 2015. [6]Yoon S H, Kim H S, Yeom I T. Optimization model of submerged hollow fiber membrane modules [J]. J. Membr. Sci., 2004, 234(1-2), 147–156. [7]Hilke R, Albrecht W, Weigel T, Paul D, Witte S, Hapke J. The duomodule. Part 1: Hydrodynamic investigations [J]. J. Membr. Sci. 1999,154(2): 183–194. [8]Chang S, Fane A G. Filtration of biomass with lab-scale submerged hollow fibre membrane module: effect of operational conditions and module configuration [J]. J. Chem. Technol. Bioteehnol., 2002, 77 (9): 1030–1038. [9]Chang S, Fane A G, Vigneswaran S. Modeling and optimizing submerged hollow fiber membrane modules [J]. AIChE Journal, 2002, 48(10), 2203–2212. [10]Field R W, Wu D, Howell J A, et al. Critical flux concept for microfiltration fouling [J]. J. Membr. Sci., 1995, 100 (3), 259–272. [11]Yoon S H, Lee S H, Yeom I T. Experimental verification of pressure drop models in hollow fiber membrane [J]. J. Membr. Sci., 2008, 310(1-2), 7–121. [12]Carroll T. The effect of cake and fiber properties on flux declines in hollow-fiber microfiltration membranes [J]. J.Membr.Sci.2001,189(2): 167–178. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号