熔喷法制备优异热阻隔性能的锂离子电池隔膜 |
作者:王健b,温乐乐b, 秦德君b,卢林c,刘彬彬a, 薛立新ab |
单位: (a中国浙江工业大学之江学院,特种纤维材料研制和应用创新中心,绍兴,浙江312030) (b中国科学院宁波材料技术与工程研究所,中科院海洋新材料和应用技术重点实验室,宁波 315201) (c叶鹰纺化股份有限公司,绍兴,浙江312030) |
关键词: 熔喷法;隔膜;锂离子电池;热阻隔性能 |
DOI号: |
分类号: TQ15 |
出版年,卷(期):页码: 2015,35(6):33-39 |
摘要: |
以聚丙烯树脂为原料,通过熔喷法制备了一种新型的锂离子电池隔膜,以商业锂离子电池聚丙烯隔膜为对比,研究了两种隔膜在电解液吸附速率、润湿性、机械强度以及大倍率充放电条件下的循环稳定性。研究结果显示,由于相互交错的纤维结构,熔喷法制备的锂离子电池隔膜展现出更优异的液体电解液吸附速率、润湿性以及更高的机械强度。此外,在大倍率条件下进行充放电循环,熔喷法制备的隔膜具有更高的比容量与更加优异的循环稳定性。同时,对两种隔膜的热阻隔性能测试也表明,由熔喷法制备的聚丙烯隔膜显示出比商业锂离子电池聚丙烯隔膜更优异的热阻隔性能,可以进一步提高锂离子电池使用的安全性. |
Novel polypropylene based separators for lithium ion battery (LIB) was successfully prepared via melt-brown method. Compared with commercial polypropylene based separators, melt-blown separator exhibited both higher mechanical strength and improved absorption rate and wet ability for electrolyte, relating to its inter-connected inside continuous micro-fibrous structures. Due to its excellent properties, the capacity and cycling stability of LIBs assembled with novel melt-brown separator were greatly improved at higher charging or discharging rates. The thermal property measurement for the separator from melt-brown method also showed superior thermal barrier property, which may enhance the safety of lithium ion battery. |
基金项目: |
作者简介: |
参考文献: |
[1]Xu Q, Kong Q, Liu Z, et al. Cellulose/Polysulfonamide Composite Membrane as a High Performance Lithium-Ion Battery Separator[J]. ACS Sustainable Chemistry & Engineering, 2013, 2(2): 194-199. [2]Chang Y C, Sohn H J. Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons[J]. Journal of The Electrochemical Society, 2000, 147(1): 50-58. [3]Itagaki M, Kobari N, Yotsuda S, et al. In situ electrochemical impedance spectroscopy to investigate negative electrode of lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2004, 135(1): 255-261. [4]Xia Y, Xiao Z, Dou X, et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries[J]. ACS nano, 2013, 7(8): 7083-7092. [5]Guo P, Song H, Chen X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries[J]. Electrochemistry Communications, 2009, 11(6): 1320-1324. [6]Zhou G, Wang D W, Li F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J]. Chemistry of Materials, 2010, 22(18): 5306-5313. [7]Mukerjee S, Thurston T R, Jisrawi N M, et al. Structural Evolution of LixMn2O4 in Lithium‐Ion Battery Cells Measured In Situ Using Synchrotron X‐Ray Diffraction Techniques[J]. Journal of The Electrochemical Society, 1998, 145(2): 466-472. [8]Taberna P L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications[J]. Nature materials, 2006, 5(7): 567-573. [9]Cao A M, Hu J S, Liang H P, et al. Self‐Assembled Vanadium Pentoxide (V2O5) Hollow Microspheres from Nanorods and Their Application in Lithium‐Ion Batteries[J]. Angewandte Chemie International Edition, 2005, 44(28): 4391-4395. [10]Wu Z S, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS nano, 2010, 4(6): 3187-3194. [11]Song J Y, Wang Y Y, Wan C C. Review of gel-type polymer electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 1999, 77(2): 183-197. [12]Wakihara M. Recent developments in lithium ion batteries[J]. Materials Science and Engineering: R: Reports, 2001, 33(4): 109-134. [13]Manuel Stephan A. Review on gel polymer electrolytes for lithium batteries[J]. European Polymer Journal, 2006, 42(1): 21-42. [14]Hassoun J, Scrosati B. A High‐Performance Polymer Tin Sulfur Lithium Ion Battery[J]. Angewandte Chemie International Edition, 2010, 49(13): 2371-2374. [15]Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5): 2525-2540. [16] 徐亮,王向东,杨书廷. 一种新型锂离子电池隔膜及其生产方法: 中国, 03126299.6[P]. 2004-07-21. [17] 李长杰,杨书廷,徐亮,等. 锂离子电池隔膜及其生产方法: 中国, 200610057432.1[P]. 2006-08-16. [18] 尤臻,罗明俊,刘会权,等. 一种锂离子电池隔膜及其制作方法: 中国, 200910189657.6[P]. 2011-03-30. [19] 曾钫,赵建青,吴水珠,等. 一种用于制备锂离子电池隔膜的专用料及其制备方法: 中国, 201010251309.X[P]. 2010-12-15. [20] 朱晓,靳磊,李顺阳,等. 一种锂离子电池隔膜及其制备方法: 中国, 201110047740.7[P]. 2012-03-14. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号