正渗透金属无机盐驱动液对藻水分离的影响
作者:方文哲,沈俏会,陈丽萍,程丽华,徐新华
单位: 浙江大学,环境与资源学院,环境工程研究所,杭州 310058
关键词: 正渗透;小球藻;金属无机盐;膜污染;溶质反渗透;藻体吸附(作用)
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2015,35(6):81-86

摘要:
 正渗透技术具有低能耗、低成本和低污染等优点,目前正不断与传统工艺相融合,如藻水分离,形成新型节能工艺。为了提高正渗透分离藻水体系的出水通量,本研究比较了金属无机盐驱动液浓度和价态对正渗透出水通量的影响,然后将金属无机盐驱动液用于藻水分离体系。研究结果表明:提高驱动液金属无机盐浓度,出水通量会呈现上升趋势,但不呈现线性关系;提高驱动液金属无机盐价态,出水通量明显上升,但三价金属无机盐不适合于正渗透藻水分离。和一价金属无机盐NaCl、KCl相比,利用二价金属无机盐CaCl2、MgCl2为驱动液进行藻水分离时,初始出水通量高达20 L/m2h,但出水通量衰减明显且膜污染严重,不过二价金属无机盐反渗质量和藻体对二价反渗金属离子的吸收或吸附作用都显著小于一价金属无机盐。该研究对于微藻生物能源的可持续发展具有重要意义。
 
  Due to the advantages including low energy consumption, low cost and low pollution, forward osmosis (FO) technology have recently penetrated into traditional processes, i.e. microalgae separation from water, to become new energy saving technologies. To improve the permeate flux of microalgal dewatering by FO, the concentrations and valence states of metal inorganic salts were first studied followed by the application for microalgae dewatering. The results showed that the increase of ions concentrations could increase the permeate flux, but the increase trend was not linearly. The increase of ion valence could also increase the driving force, but the trivalent metal inorganic salts were found not suitable as draw solutions. Comparing with the single valent metal inorganic salts such as NaCl or KCl, the divalent metal inorganic salts as draw solutions had higher driving force, i.e. the initial water flux was 20 L/m2h when CaCl2 or MgCl2 were used as draw solutions. Although both the total amount of the reversely diffused ions of Ca2+ or Mg2+, either adsorbed or absorped by microalgae, were much lower than NaCl or KCl as draw solutions, rapid decline of the permeate flux and more severe membrane fouling was found for the microalgae separation from water. The results of this work were also useful for the sustainable development of microalgal bioenergy.
 

基金项目:

作者简介:

参考文献:
 [1]Wijffels RH, Barbosa MJ. An outlook on microalgal biofuels, Science[J], 2010, 329: 796-799.
[2]黄英明, 王伟良, 李元广, 等. 微藻能源技术开发和产业化的发展思路与策略[J]. 生物工程学报, 2010, 26(7): 907-913.
[3]Rodolfi L, Chini ZG, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor[J], Biotechnol Bioeng, 2009, 102(1): 100-112.
[4]张芳, 程丽华, 徐新华, 等. 能源微藻采收及油脂提取技术[J]. 化学进展,2012, 10: 2062-2072.
[5]Gerardo ML, Oatley-Radcliffe DL, Lovitt RW. Minimizing the energy requirement of dewatering scendesmus sp. by microfiltration: performance, costs, and feasibility[J], Environ Sci Technol, 2014, 48: 845-853.
[6]Zou S, Gu YS, Xiao DZ, et al. The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation[J], J Membr Sci, 2011, 366: 356–362.
[7]Buckwalter P, Embaye T, Gormly S, et al.  Dewatering microalgae by forward osmosis[J], Desalination, 2013, 312: 19-22.
[8]Hoover LA, Phillip WA, Tiraferri A, et al. Forward with osmosis: emerging applications for greater sustainability[J], Environ Sci Technol, 2011, 45: 9824-9830.
[9]李丽丽, 许春玲, 王铎. 正渗透膜用于橙汁浓缩及其污染研究[J]. 膜科学与技术, 2012, 32(6): 87-91.
[10]Tang CY, Chong TH, Fane AG. Colloidal interactions and fouling of NF and RO membranes: a review[J], Adv. J Colloid Interf Sci, 2011, 164: 126–143.
[11]Tang CY, Kwon YN, Leckie JO. The role of      foulant–foulant electrostatic interaction on limiting ?ux for RO and NF membranes during humic acid fouling—theoretical basis, experimental evidence, and AFM interaction force measurement[J], J Membr Sci, 2009, 326: 526–532.
[12]McCutcheon JR, Elimelech M. In?uence of concentrative and dilutive internal concentration polarization on ?ux behavior in forward osmosis[J], J Membr Sci, 2006, 284 (1–2): 237–247.
[13]Tang CY, She Q, Lay WCL, et al.Coupled effects of internalconcentration polarization and fouling on flux behavior of forward osmosismembranes during humic acid filtration[J], J Membr Sci, 2010, 354: 123–133.
[14]Mi B, Elimelech M. Chemical, physical aspects of organic fouling of forwardosmosis membranes[J]. J Membr Sci, 2008, 320 (1-2): 292–302.
[15]解一君, 马睿, 夏圣骥, 等. 正渗透膜净水试验研究[J], 水处理技术, 2012, 38(12): 78-81.
[16]Uduman N, Qi Y, Michael kd, et al. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels[J], J Renew Sustain Ener 2, 2010, 012701: 1-15.
[17]Heasman M, Diemar J, O’Connor W, et al. Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary[J], Aquac Res, 2000, 31(8-9): 637-659.
[18]Semerjian L, Ayoub GM. High-pH-magnesium coagulation–flocculation in wastewater treatment[J], Adv Environ Res, 2003, 7(2): 389-403.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号