氧化石墨烯:膜科学的机遇与挑战 |
作者:李方1,2 孟蝶1 |
单位: 1. 东华大学环境科学与工程学院,上海 201620; 2. 国家环境保护纺织工业污染防治工程技术中心,上海 201620 |
关键词: 氧化石墨烯(GO)膜过滤 分离机理 分子筛分 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2015,35(6):106-112 |
摘要: |
氧化石墨烯由于其特殊的分子结构而具备超强的弹性、化学稳定性和机械强度.作为新型膜材料,氧化石墨烯在膜分离方面表现出独特的分离性能.根据目前的研究结果,氧化石墨烯膜的分离机理主要是尺寸排阻的分子筛分机理,分离效率也受其他因素的影响.基于以上理论,氧化石墨烯膜在分离可调性方面表现出了更突出的优势,可通过真空过滤和分层组装等方式实现薄片间隙层尺寸调节.同时,氧化石墨烯可通过与高分子聚合物共混等方式来提高有机膜的通量和抗污染性能.总之,氧化石墨烯为膜科学的发展提供了机遇和挑战. |
Due to its special structure, graphene oxide (GO) exhibits superior properties, such as flexibility, chemical stability and mechanical strength. The membranes prepared by GO sheets show an unique separation performance. According to recent research reports, the basic separation mechanism of GO membranes is molecular sieving of size exclusion, and the separation efficiency is influenced by the other factors. Based on the principle of molecular size sieving, GO membranes present more prominent advantages in size tunability which can be realized by changing the interlayer size via vacuum filtration or self-assembling. Meanwhile, GO can improve the permeability and antifouling performance of organic membranes by blending GO nanosheets with macromolecular polymers. In conclusion, GO provides challenges and opportunities for the development of membrane science. |
基金项目: |
作者简介: |
参考文献: |
[1] Freeman B D.Polymer membranes for water purification[J].Abstr.Papers Am.Chem.Soc, 2013, 246: 359-362. [2] Zhao S F, Zou, L C, Tang Y, et al.Recent developments in forward osmosis: Opportunities and challenges[J]. J Membr Sci, 2012, 396: 1-21. [3] 付乐乐, 李方, 吴亮, 等. 超滤膜深度处理染整废水的膜污染机理[J].环境工程学报, 2013, 3: 1313-1318. [4] Cai Z, Wee C, Benjamin M M.Fouling mechanisms in low-pressure membrane filtration in the presence of an adsorbent cake layer [J].J Membr Sci, 2013, 433: 32-38. [5] Shao L, Wang Z X, Zhang Y L, et al.A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate[J].J Membr Sci, 2014, 461: 10-21. [6] Gullinkala T, Escobar I.Study of the hydrophilic-enhanced ultrafiltration membrane[J].Environ Prog, 2008, 27: 210-217. [7] Huang H, Ying Y, Peng X.Graphene oxide nanosheet: an emerging star material for novel separation membranes[J].J.Mater.Chem., 2014, 2: 13772-13782. [8] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chem Soc Rev , 2010, 39(1): 228-240. [9] Li D, Mueller M B, Gilje S, et al.Processable aqueous dispersions of graphene nanosheets[J].Nat.Nanotech., 2008, 3(2): 101-105. [10] Huang H B, Mao Y Y, Ying Y L, et al.Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes[J].Chem Commun, 2013, 49(53): 5963-5965. [11] Smith Z P, Freeman B D.Graphene oxide: a new platform for high-performance gas and liquid-separation membranes[J].Angew.Chem , 2014, 53: 10286-10288. [12] Qiu L, Zhang X H, Yang W R, et al.Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration[J].Chem Commun, 2011,47(20): 5810-5812. [13] Wang X L, Bai H, Shi G Q.Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation[J].J Am Chem Soc, 2011,133(16): 6338-6342. [14] Zhao J, Wang Z, White J C, et al.Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation[J]. Environ Sci & Technol, 2014, 48: 9995-10009. [15] Zhu Y, Murali S, Cai W, et al.Graphene and Graphene Oxide: Synthesis, Properties, and Applications[J].Adv.Mater., 2010, 22: 3906-3924. [16] Cote L J, Kim F, Huang J X.Langmuir- Blodgett assembly of graphite oxide single layers[J].J Am Chem Soc, 2008, 131(3): 1043-1049. [17] Pham V H, Cuong T V, Hur S H, et al.Fast simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J].Carbon, 2010,48(7): 1945-1951. [18]杨永清,齐署华,张翼,等.石墨及其改性产物研究进展[J].材料导报,2011,25(15):53-57 [19] Berry V.Impermeability of graphene and its applications[J].Carbon, 2013, 62: 1-10. [20] Koenig S P, Wang L, Pellegrino J, et al.Selective molecular sieving through porous graphene[J].Nat.Nanotech., 2012, 7: 728-732. [21]王蓓娣, GO的功能化改性及应用研究[C].上海:复旦大学,2012. [22] Wei N, Peng X, Xu Z.Understanding Water Permeation in Graphene Oxide Membranes[J]. Acs Appl Mater & Inter, 2014, 6(8): 5877-5883. [23] Li H, Song Z N, Zhang X J,et al.Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation[J]. Science, 2013, 342(6154): 95-98. [24]Shao L, Chen X Q, Wang Z X, et al.Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide[J].J Membr Sci, 2014, 452: 82-89. [25]Nicolai A, Sumpter B G, Meunier V.Tunable water desalination across graphene oxide framework membranes[J]. Phy Chem Chem Phy, 2014, 16(18): 8646-8654. [26]唐秀之, GO表面功能化修饰[C].北京:北京化工大学, 2012. [27] Joshi R K, Carbone P, Wang F C, et al.Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes[J].Science, 2014, 343: 752-754. [28] Nair R R, Wu H A, Jayaram P N, et al.Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes[J].Science, 2012, 335: 442-444. [29] Huang H B, Ying Y L, Peng X S.Graphene oxide nanosheet: an emerging star material for novel separation membranes[J].J Mater Chem, 2014 , 2: 13772-13782. [30] Kim H W, Yoon H W, Yoon S M, et al.Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes[J].Science, 2013, 342: 91-95. [31] Wei N, Peng X, Xu Z. Understanding Water Permeation in Graphene Oxide Membranes[J].Acs Appl Mater & Inter, 2014, 6: 5877-5883. [32]Richard W.Baker. Membrane technology and applications[M].second edition. California: Menlo Park,2003. [33] Zhang J G, Xu Z W, Shan M J, et al.Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes[J].J Membr Sci, 2013, 448(0): 81-92. [34] Athanasekou C P, Morales-Torres S, Likodimos V, et al.Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light[J].Appl Catal B-Environ, 2014,158: 361-372. [35] Mohammad-Rezaei R, Razmi H, Dehgan-Reyhan S.Preparation of graphene oxide doped eggshell membrane bioplatform modified Prussian blue nanoparticles as a sensitive hydrogen peroxide sensor[J].Colloid Surface B, 2014,118: 188-193. [36] 邵路, 程喜全.一种石墨烯/聚吡咯复合正渗透膜的制备方法[P].中国,发明, CN103301758A.2013.05.20. [37] Liu R, Arabale G, Kim J, et al.Graphene oxide membrane for liquid phase organic molecular separation[J].Carbon, 2014.77: 933-938. [38] Mi B.Graphene Oxide Membranes for Ionic and Molecular Sieving[J].Science, 2014, 343: 740-742. [39] Ganesh B M, Isloor A M, Ismail A F.Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane[J].Desalination, 2013, 313: 199-207. [40] 黄虎彪.GO超滤分离膜[C].浙江:浙江大学,2014. [41] Hu M, Mi B. Enabling Graphene Oxide Nanosheets as Water Separation Membranes[J].Environ Sci & Technol, 2013,47: 3715-3723. [42] An Z, Compton O C, Putz K W, et al.Bio-Inspired Borate Cross-Linking in Ultra-Stiff Graphene Oxide Thin Films[J].Adv.Mater, 2011, 23: 3842-3846. [43] Xu Z, Zhang J, Shan M, et al.Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes[J].J Membr Sci,2014, 458: 1-13. [44] Zinadini S, Zinatizadeh A A, Rahimi M, et al.Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates[J].J Membr Sci, 2014, 453: 292-301. [45] Shao L, Cheng X, Wang Z, et al.Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide[J].J Membr Sci, 2014 ,452: 82-89. [46] Zhang J, Xu Z, Shan M, et al.Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes[J].J Membr Sci, 2013, 448: 81-92. [47] Gao P, Liu Z, Tai M, et al.Multifunctional graphene oxide–TiO2 microsphere hierarchical membrane for clean water production[J].Appl Catal B-Environ, 2013,138: 17-25. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号