PEBA/MCM-41杂化膜的制备及其对苯酚/水的渗透汽化分离性能
作者:王敏敏,张新儒,郝晓刚*,李春成,丁川,王倩
单位: 太原理工大学 化学化工学院,太原 030024
关键词: MCM-41;聚醚共聚乙酰胺(PEBA2533);苯酚;渗透蒸发
DOI号:
分类号: TQ 028.8
出版年,卷(期):页码: 2015,35(6):40-47

摘要:
 将介孔MCM-41分子筛填充到聚醚共聚乙酰胺(PEBA2533)中,制备PEBA/MCM-41杂化膜,用于分离稀水溶液中的苯酚。采用SEM、FT-IR、TGA对膜的形貌、化学结构及热稳定性进行表征。考察MCM-41填充量对膜的吸附、扩散及渗透汽化分离性能的影响。结果表明:填充MCM-41使膜溶胀性能及扩散分离因子增大,溶胀度可提高43%;随MCM-41填充量的增加,渗透通量增大,分离因子基本不变;当填充量达到4%时,膜的分离效果最佳,苯酚通量提高21%。苯酚、水的扩散系数结果证实,填充MCM-41使分子在膜中的扩散速率增大。当原料液浓度增大时,通量增大,分离因子降低;通量、分离因子均随温度升高而增大。
 
 :Mesoporous MCM-41 filled poly(ether-block-amide)(PEBA2533) membranes were prepared for pervaporation separation of phenol from dilute aqueous solutions. The structural morphology and thermal stability of these hybrid membranes were characterized by SEM, FT-IR and TGA. The effects of MCM-41 content on the sorption, diffusion and pervaporation performances were investigated. The results showed that the swelling degree and diffusion separation factor of PEBA/MCM-41 membranes increased. When the MCM-41 content was 4%, the membrane’s swelling degree increased by 43% compared with that of plain PEBA. With the increase of MCM-41 content, PEBA/MCM-41 membranes displayed significantly improved permeation flux and almost equivalent phenol/water separation factor. The hybrid membrane containing 4 wt% MCM-41 showed the best pervaporation performance with increasing phenol flux by 21%. The diffusion coefficients of phenol and water were also estimated by Fick’s first law, which suggests that using a mesoporous molecular sieve as the filler could enhance penetration of the polymer. Effects of operating conditions on the separation performance have been systematically assessed. It was found that the permeation flux increased while the separation factor decreased with the increase of feed concentration. All the hybrid membranes demonstrated increasing separation factor and permeation flux with increasing temperature.
 

基金项目:
山西省回国留学人员科研资助项目(2013051)

作者简介:
王敏敏(1989-),女,山东菏泽人,硕士研究生,从事渗透汽化膜研究. *通讯作者,Email:xghao@tyut.edu.cn

参考文献:
 [1] Busca G, Berardinelli S, Resini C, et al. Technologies for the removal of phenol from fluid streams: A short review of recent developments[J]. Journal of Hazardous Materials, 2008, 160(2-3): 265~288.
[2] Krastanov A, Alexieva Z, Yemendzhiev H. Microbial degradation of phenol and phenolic derivatives[J]. Engineering in Life Sciences, 2013, 13(1): 76~87.
[3] Shao P, Huang R Y M. Polymeric membrane pervaporation[J]. Journal of Membrane Science, 2007, 287(2): 162~179.
[4] Zhang X R, Li C C, Hao X G, et al. Recovering phenol as high purity crystals from dilute aqueous solutions by pervaporation[J]. Chemical Engineering Science, 2014, 108: 183~187.
[5] Li C C, Zhang X R, Hao X G, et al. Thermodynamic and mechanistic studies on recovering phenol crystals from dilute aqueous solutions using pervaporation-crystallization coupling (PVCC) system[J]. Chemical Engineering Science, 2015, doi: 10.1016/j.ces.2015.01.039.
[6] Hao X G, Pritzker M, Feng X S. Use of pervaporation for the separation of phenol from dilute aqueous solutions[J]. Journal of Membrane Science, 2009, 335(1-2): 96~102.
[7] Huang J C, Meagher M M. Pervaporative recovery of n-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes[J]. Journal of Membrane Science, 2001, 192(1-2): 231~242.
[8] Fouad E A, Feng X S. Pervaporative separation of n-butanol from dilute aqueous solutions using silicalite-filled poly(dimethyl siloxane) membranes[J]. Journal of Membrane Science, 2009, 339(1-2): 120~125.
[9] Te Hennepe H J C, Bargeman D, Mulder M H V, et al. Zeolite-filled silicone rubber membranes: Part 1. Membrane preparation and pervaporation results[J]. Journal of Membrane Science, 1987, 35(1): 39~55.
[10] Zhang C F, Yang L, Bai Y X, et al. ZSM-5 filled polyurethaneurea membranes for pervaporation separation isopropyl acetate from aqueous solution[J]. Separation and Purification Technology, 2012, 85: 8~16.
[11] Tuan V A, Li S G, Falconer J L, et al. Separating organics from water by pervaporation with isomorphously-substituted MFI zeolite membranes[J]. Journal of Membrane Science, 2002, 196(1): 111~123.
[12] 刘琨, 陈松. 碳分子筛填充聚醚共聚乙酰胺膜渗透汽化分离水溶液中的醋酸正丁酯[J]. 膜科学与技术, 2010, 30(2): 45~51.
[13] 韩小龙, 张杏梅, 马晓迅, 等. 碳纳米管填充PDMS膜的渗透汽化性能[J]. 化工学报, 2014, 65(1): 271~278.
[14] Reid B D, Ruiz-Trevino F A, Musselman I H, et al. Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41[J]. Chemistry of Materials, 2001, 13(7): 2366~2373.
[15] Kim S, Marand E, Ida J, et al. Polysulfone and mesoporous molecular sieve MCM-48 mixed matrix membranes for gas separation[J]. Chemistry of Materials, 2006, 18(5): 1149~1155.
[16] Zhang Y F, Balkus Jr K J, Musselman I H, et al. Mixed-matrix membranes composed of matrimid® and mesoporous ZSM-5 nanoparticles[J]. Journal of Membrane Science, 2008, 325(1): 28~39.
[17] Buonomenna M G, Golemme G, Tone C M, et al. Amine-functionalized SBA-15 in poly (styrene-b-butadiene-b-styrene)(SBS) yields permeable and selective nanostructured membranes for gas separation[J]. Journal of Materials Chemistry A, 2013, 1(38): 11853~11866.
[18] Kumar P, Guliants V V. Periodic mesoporous organic-inorganic hybrid materials: Applications in membrane separations and adsorption[J]. Microporous and Mesoporous Materials, 2010, 132(1-2): 1~14.
[19] Jomekian A, Pakizeh M, Shafiee A R, et al. Fabrication or preparation and characterization of new modified MCM-41/PSf nanocomposite membrane coated by PDMS[J]. Separation and Purification Technology, 2011, 80(3): 556~565.
[20] Tan H F, Wu Y H, Zhou Y, et al. Pervaporative recovery of n-butanol from aqueous solutions with MCM-41 filled PEBA mixed matrix membrane[J]. Journal of Membrane Science, 2014, 453: 302~311.
[21] Lue S J, Yang T H, Chang K S, et al. Water diffusivity suppression and ethanol-over-water diffusion selectivity enhancement for ethanol/water mixtures in polydimethylsiloxane-zeolite membranes[J]. Journal of Membrane Science, 2012, 415-416: 635~643.
[22] Wang L, Han X L, Li J D, et al. Preparation of modified mesoporous MCM-41 silica spheres and its application in pervaporation[J]. Powder Technology, 2012, 231: 63~69.
[23] Shylesh S, Singh A P. Synthesis, characterization, and catalytic activity of vanadium-incorporated, -grafted, and -immobilized mesoporous MCM-41 in the oxidation of aromatics[J]. Journal of Catalysis, 2004, 228(2): 333~346.
[24] Caps V, Tsang S C. Heterogenisation of Os species on MCM-41 structure for epoxidation of trans-stilbene[J]. Applied Catalysis A: General, 2003, 248(1-2): 19~31.
[25] Gu J, Zhang X R, Bai Y X, et al. ZSM-5 filled polyether block amide membranes for separating EA from aqueous solution by pervaporation[J]. International Journal of Polymer Science, 2013, 2013: 1~10.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号