PVA/nano-TiO2杂化膜的制备与碱回收性能研究 |
作者:姚兰忠,李雪云,苗继斌,钱家盛,夏茹,杨斌 |
单位: 安徽大学 化学化工学院 安徽省绿色高分子材料重点实验室,合肥 230601 |
关键词: γ-MPTS;纳米二氧化钛;杂化膜;碱回收;扩散渗析 |
DOI号: |
分类号: TQ028.8, O631 |
出版年,卷(期):页码: 2016,36(1):81-87 |
摘要: |
利用γ-巯丙基三乙基硅烷(γ-MPTS)对纳米氧化钛颗粒 (p-TiO2)进行了表面修饰引入巯基(-SH),采用双氧水氧化的方法制备了表面带有-SO3H的纳米氧化钛颗粒 (s-TiO2)。利用溶液共混的方式将s- TiO2和预交联的PVA溶液混合后涂覆成膜,制备了一系列PVA/nano-TiO2有机-无机杂化膜。对杂化膜的结构测试结果表明其具有良好的机械稳定性,热稳定性和耐碱性:拉伸强度为37.0-53.4 MPa,断裂伸长率为43.2%-146.0%;65℃碱液中的溶胀度为205.4%-220.2%,质量损失为10.0%-15.9%。制备的杂化膜含水量(WR)为90.9%-105.6%,离子交换容量(IEC)为0-0.025 mmol/g。利用NaOH/Na2WO4体系模拟扩散渗析回收NaOH的结果表明:25℃时OH-渗析系数为0.013-0.015 m/h,分离系数为21.8-30.1。 |
In this research, surface of pure titanium dioxide nanoparticles (p-TiO2)was modified with 3-mercaptopropyltriethoxysilane (γ-MPTS) to introduce -SH firstly and then hydrogen peroxide (H2O2) was used as a green oxidizing agent to introduce -SO3H. After that a series of PVA/nano-TiO2 hybrid membranes were prepared by blending s-TiO2 and pre-crosslinked polyvinyl alcohol (PVA) solution directly. The as-prepared membrane were thermally and mechanically stable, with tensile strength of 37.0-53.4MPa and elongation at break of 43.2%-146.0%. Swelling degree of 205.4%-220.2% and weight loss of 10.0%-15.9% in 65℃ 2 mol/L NaOH solution. The membrane possessed water uptake (WR) of 90.9%-105.6% and ion exchange capacity (IEC) of 0-0.025 mmol/g, respectively. The membranes were used for alkali recovery via the system of NaOH/Na2WO4 based on diffusion dialysis successfully and results showed that dialysis coefficients of OH- (UOH) were in the range of 0.013-0.015 m/h, separation factors (S) were in an acceptable range of 21.8-30.1. |
基金项目: |
国家自然科学基金(51273001),博士点基金(2011340110003) |
作者简介: |
第一作者:姚兰忠(1987-),男,安徽宿州人,硕士研究生,从事有机-无机杂化膜研究,*通讯作者,E-mail:qianjsh@ahu.edu.cn |
参考文献: |
[1] Stachera D M, Childs R F, Mika A M,et al.Acid recovery using diffusion dialysis with poly(4-vinylpyridine)-filled microporous membranes [J]. Journal of Membrane Science, 1998, 148(1):119-127. [2] Lan S J, Wen X M, Zhu Z H, et al.Recycling of spent nitric acid solution from electrodialysis by diffusion dialysis [J]. Desalination, 2011, 278(1-3): 227-230. [3] Hao J W, Gong M, Wu Y H, et al.Alkali recovery using PVA/SiO2 cation exchange membranes with different -COOH contents [J]. Journal of Hazardous Materials, 2013, 244-245: 348-356. [4] Luo J Y, Wu C M, Xu T W, et al.Diffusion dialysis-concept, principle and applications [J]. Journal of Membrane Science, 2011, 366(1-2): 1-16. [5] Anna N Ä, Marek S. Separation of Carboxylic Acids from Carboxylates by Diffusion Dialysis [J]. Separation Science and Technology, 2008, 43(3): 490-501. [6] Xu J, Lu S G, Fu D. Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis [J]. Journal of Hazardous Materials, 2009, 165(1-3): 832-837. [7] Wu Y H, Luo J Y, Zhao L L, et al.QPPO/PVA anion exchange hybrid membranes from double crosslinking agents for acid recovery [J]. Journal of Membrane Science, 2013, 428: 95-103. [8] Miao J B, Yao L Z, Yang Z J, et al.Sulfonated poly(2,6-dimethyl-1,4-phenyleneoxide)/nano silica hybrid membranes for alkali recovery via diffusion dialysis [J]. Separation and Purification Technology, 2015, 141: 307-313. [9] Wu Y H, Hao J W, Wu C M, et al.Cation exchange PVA/SPPO/SiO2 membranes with double organic phases for alkali recovery [J]. Journal of Membrane Science, 2012, 423-424: 383-391. [10] Liu R, Wang L, Pang J F, et al.Diffusion dialysis membranes with semi-interpenetrating network for alkali recovery [J]. Journal of Membrane Science, 2014, 451: 18-23. [11] Xiao X L, Wu C M, Cui P, et al.Cation exchange hybrid membranes from SPPO and multi-alkoxy silicon copolymer: Preparation, properties and diffusion dialysis performances for sodium hydroxide recovery [J]. Journal of Membrane Science, 2011, 379(1-2): 112-120. [12] Wu Y H, Lin H Y, Zhang G C, et al.Non-charged PVA/SiO2 hybrid membranes for potential application in diffusion dialysis [J]. Separation and Purification Technology,2013, 118: 359-368. [13] Kim D S, Park H B, Rhim J W, et al.Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications [J]. Journal of Membrane Science, 2004, 240(1-2): 37-48. [14] Yang C C. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC [J]. Journal of Membrane Science, 2007, 288(1-2): 51-60. [15] Wu Y H, Wu C M, Li Y, et al.PVA-silica anion-exchange hybrid membranes prepared through a copolymer crosslinking agent [J]. Journal of Membrane Science, 2010, 350(1-2): 322-332. [16] Yun S , Im H , Heo Y , et al. Crosslinked sulfonated poly(vinyl alcohol)/sulfonated multi-walled carbon nanotubes nanocomposite membranes for direct methanol fuel cells [J]. Journal of Membrane Science, 2011, 380(1-2): 208-215. [17] Hu S Y, Zhang Y F, Lawless D,et al. Composite membranes comprising of polyvinylamine-poly(vinyl alcohol) incorporated with carbon nanotubes for dehydration of ethylene glycol by pervaporation [J]. Journal of Membrane Science, 2012, 417-418: 34-44. [18] MauryaA, Pratima C.Synthesis and characterization of sol-gel derived PVA-titanium dioxide (TiO2) nanocomposite [J]. Polym. Bull., 2012, 68(4): 961-972. [19] Hao J W, Wu Y H, Xu Y W. Cation exchange hybrid membranes prepared from PVA and multisilicon copolymer for application in alkali recovery [J]. Journal of Membrane Science, 2013, 425-426:156-162. [20] Palatý Z, Sto?ek P, ?ákováA, et al.Transport Characteristics of Some Carboxylic Acids in the Polymeric Anion-Exchange Membrane Neosepta-AMH: Batch Experiments [J]. Journal of Applied Polymer Science, 2007, 106:909–916. [21] Cozzi D, Bonis C D, D’Epifanio A, et al. Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications [J]. Journal of Power Sources, 2014, 248: 1127-1132. [22] Connor P A, Dobson K D,McQuillan A J. Infrared Spectroscopy of the TiO2/Aqueous Solution Interface [J]. Langmuir : the ACS journal of surfaces and colloids, 1999, 15: 2402-2408. [23] Fatyeyeva K, BigarréJ, Blondel B,et al. Grafting of p-styrene sulfonate and 1,3-propane sultone onto Laponite for proton exchange membrane fuel cell application [J]. Journal of Membrane Science, 2011, 366(1-2): 33-42. [24] Zhang Y, Guo M, Pan G Y,et al. Preparation and properties of novel pH-stable TFC membrane based on organic–inorganic hybrid composite materials for nanofiltration [J]. Journal of Membrane Science, 2015, 476: 500-507. [25] Luo J Y, Wu C M, Wu Y H, et al.Diffusion dialysis of hydrochloride acid at different temperatures using PPO/SiO2 hybrid anion exchange membranes [J]. Journal of Membrane Science,2010, 347(1-2): 240-249. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号