介孔陶瓷膜表面接枝氨基硅烷的孔径调节研究
作者:张婷, 李雪, 熊峰, 邱鸣慧, 范益群
单位: 南京工业大学化学化工学院, 材料化学工程国家重点实验室, 南京 210009
关键词: 表面接枝;介孔陶瓷膜;亲水改性;孔径
DOI号:
分类号: TQ174
出版年,卷(期):页码: 2016,36(1):45-49

摘要:
 表面接枝技术是调控陶瓷膜表面性质的主要方法,而当表面接枝分子大小与膜孔径相当时,表面接枝过程也可用于改变膜的孔径. 本文采用表面接枝技术在介孔陶瓷膜表面接枝亲水性的氨基硅烷,考察了接枝过程对陶瓷膜渗透分离性能的影响,分析了接枝分子对陶瓷膜孔径的减小作用. 红外光谱及热重结果表明,3-氨丙基三甲氧基硅烷(APS)接枝到陶瓷膜表面;接触角实验结果表明,接枝APS分子后的陶瓷膜表面呈现亲水特性;控制改性溶液中APS浓度为10 mmol/L,可制备得到截留分子量为1000 Da的陶瓷膜,此时相比于未改性膜,孔径减小约1 nm. 
 Surface grafting is a key technique for chemical modification of ceramic membranes, noteworthily, when the grafting molecule size has a magnitude equal to the pore size of the membranes, the surface grafting process will inevitably affect the membrane pore size. In this paper, with the purpose of regulating the ceramic membrane pore size, the amino silane was grafted on the surface and pores of the mesoporous ceramic membranes via surface grafting, the effect of the grafting process on the properties of ceramic membranes was studied, and great attention was paid to the influence of the grafted APS molecules on the pore size of ceramic membranes. Fourier transform infrared spectroscopy(FTIR) and thermogravimertric analyses(TGA) confirmed the grafting of APS molecules onto the ceramic membrane surface. Water contact angle(CA) measurements indicated that the membranes were still hydrophilic after modification. Finally, the ceramic membrane with a MWCO of 1000 Da was obtained by controlling the concentration of APS in the modification solution 10 mmol/L, and the pore size decreased by 1 nm compared to the original membranes. 

基金项目:
国家“863”计划课题(2012AA03A606)、江苏高校优势学科建设工程资助项目(PAPD)

作者简介:
作者简介: 张婷(1989-), 女, 江苏徐州人, 硕士, 从事膜分离材料的研究与应用. *通讯联系人

参考文献:
 [1] Atwater J E, Akse J R. Oxygen permeation through functionalized hydrophobic tubular ceramic membranes[J]. Journal of Membrane Science, 2007, 301(1-2): 76-84.
[2] Ren C, Fang H, Gu J, et al. Preparation and characterization of hydrophobic alumina planar membranes for water desalination[J]. Journal of the European Ceramic Society, 2015, 35(2): 723-730.
[3] Tsuru T, Nakasuji T, Oka M, et al. Preparation of hydrophobic nanoporous methylated SiO2 membranes and application to nanofiltration of hexane solutions[J]. Journal of Membrane Science, 2011, 384(1-2): 149-156.
[4] 范益群, 邢卫红. 陶瓷膜表面性质研究进展[J]. 膜科学与技术, 2013, 33(5): 1-7.
[5] Gao N, Li M, Jing W, et al. Improving the filtration performance of ZrO2 membrane in non-polar organic solvents by surface hydrophobic modification[J]. Journal of Membrane Science, 2011, 375(1-2): 276-283.
[6] Tsuru T, Kondo H, Yoshioka T, et al. Permeation of nonaqueous solution through organic/lnorganic hybrid nanoporous membranes[J]. AIChE Journal, 2004, 50(5): 1080-1087.
[7] Sah A, Castricum H L, Bliek A, et al. Hydrophobic modification of γ-alumina membranes with organochlorosilanes[J]. Journal of Membrane Science, 2004, 243(1-2): 125-132.
[8] Zhao Z P, Li J D, Zhang D X, et al. Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma: I. Graft of acrylic acid in gas[J]. Journal of Membrane Science, 2004, 232(1-2): 1-8.
[9] Zhao Z P, Li J D, Wang D, et al. Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma: 4. Grafting of N-vinylpyrrolidone in aqueous solution[J]. Desalination, 2005, 184(1-3): 37-44.
[10] Qiu C, Nguyen Q T, Ping Z. Surface modification of cardo polyetherketone ultrafiltration membrane by photo-grafted copolymers to obtain nanofiltration membranes[J]. Journal of Membrane Science, 2007, 295(1-2): 88-94.
[11] Blanc P, Larbot A, Palmeri J, et al. Hafnia ceramic nanofiltration membranes. Part I: Preparation and characterization[J]. Journal of Membrane Science, 1998, 149(2): 151-161.
[12] Van Gestel T, Vandecasteele C, Buekenhoudt A, et al. Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability[J]. Journal of Membrane Science, 2002, 207(1): 73-89.
[13] 陈献富, 张伟, 范益群. 颗粒溶胶路线制备高通量Al2O3纳滤膜[J]. 膜科学与技术, 2014, 34(3): 48-52.
[14] Cai Y, Chen X, Wang Y, et al. Fabrication of palladium–titania nanofiltration membranes via a colloidal sol–gel process[J]. Microporous and Mesoporous Materials, 2015, 201: 202-209.
[15] Puhlfürß P, Voigt A, Weber R, et al. Microporous TiO2 membranes with a cut off <500 Da[J]. Journal of Membrane Science, 2000, 174: 123-133.
[16] Gentleman M M, Ruud J A. Role of hydroxyls in oxide wettability[J]. Langmuir, 2010, 26(3): 1408-1411.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号