不同分子量聚合物对离子交换膜降低聚驱采油废水矿化度效能的影响及机制 |
作者:王婷1,于水利1,侯立安1,2 |
单位: 1.同济大学污染控制与资源化研究国家重点实验室,上海 200092;2. 解放军第二炮兵工程设计研究院,北京 100000 |
关键词: 聚驱采油废水;聚合物;矿化度;膜污染 |
DOI号: |
分类号: X703 |
出版年,卷(期):页码: 2016,36(1):30-38 |
摘要: |
本文就离子交换膜降低聚驱采油废水矿化度的效能及不同分子量聚合物的影响开展研究,结合聚合物在离子交换膜上的吸附情况、清洗液中聚合物分子量的分布情况分析,考察离子交换膜的污染特性。结果表明,溶液中HPAM分子量越大,离子交换膜降低矿化度效果越差,能耗越高;阴膜污染比阳膜更严重;异相膜的污染比均相膜严重;阳离子交换膜更易被小分子量的HPAM污染,阴离子交换膜更易被大分子量的HPAM污染。通过CLSM、FTIR、静电作用以及界面热力学分析发现,HPAM对离子交换膜会产生污染,其作用机制主要是静电作用。 |
The aim of this study was to investigate the effects of HPAM with different molecular weights (MWs) on desalination performances of ion-exchange membranes (IEMs) by using the electrodialysis (ED) stack. Also, membrane fouling characteristics were analyzed based on the MW distribution of HPAM in cleaning liquids and the adsorption of polymers on membranes. The experimental results indicated that the increase of HPAM MW would worsen the desalination performance and caused higher energy consumption in desalination. In addition, the fouling on the cation-exchange membrane (CEM) was more remarkable than that of the anion-exchange membrane (AEM). Furthermore, the study of electrostatic forces, interface thermodynamics and mechanical actions shaping by geometric factors all demonstrated that HPAM had a significant influence on fouling of IEMs, while electrostatic forces were the most significant factors. |
基金项目: |
国家高技术研究发展计划(863)项目(2008AA06Z304);科技部国际合作项目(中日韩)(2010DFA92460) |
作者简介: |
第一作者简介:王婷(1991-),女,湖北省武汉市人,工程硕士,研究方向:水处理技术,E-mail:wtmint@163.com |
参考文献: |
[1] 荆国林, 于水利, 韩强. 聚合物驱采油废水回用技术研究. [J] .给水排水, (2005) 60-63. [2] 镇祥华, 于水利, 梁春圃等. 超滤与电渗析联用降低油田采出水矿化度中试试验研究. [J] .环境污染治理技术与设备, (2006) 15-19. [3] X. Wang, R. Liu, Z. Shao, J.H. Miller et al. A new treatment technique of produced water from polymer flooding. [A] .in: Society of Petroleum Engineers - International Petroleum Technology Conference 2014, IPTC 2014: Unlocking Energy Through Innovation, Technology and Capability, 2014, pp. 2150-2158. [4] J. Guolin, W. Xiaoyu, H. Chunjie, The effect of oilfield polymer-flooding wastewater on anion-exchange membrane performance. [J] .Desalination, 220 (2008) 386-393. [5] X. Wang, Z. Wang, Y. Zhou, X. Xi. et al. Study of the contribution of the main pollutants in the oilfield polymer-flooding wastewater to the critical flux. [J] .Desalination, 273 (2011) 375-385. [6] X. Zuo, L. Wang, J. He. et al. SEM-EDX studies of SiO2/PVDF membranes fouling in electrodialysis of polymer-flooding produced wastewater: Diatomite, APAM and crude oil. [J] . Desalination, 347 (2014) 43-51. [7] M.J. Deng, W.X. Shi, S.L. Yu, Effect of oil and HPAM in polymer flooding wastewater on the desalination process by electrodialysis. [J] .in: H. Zhao (Ed.) Mechanical and Electronics Engineering Iii, Pts 1-5, Trans Tech Publications Ltd, Stafa-Zurich, 2012, pp. 1654-1657. [8] H. Guo, L. Xiao, S. Yu et al. Analysis of anion exchange membrane fouling mechanism caused by anion polyacrylamide in electrodialysis. [J] .Desalination, 346 (2014) 46-53. [9] 荆国林, 王晓玉, 赵海, 含聚污水对离子交换膜污染的影响. [J] .哈尔滨工业大学学报, (2007) 1249-1252. [10] C.M. Wu, T.W. Xu, M. Gong et al. Synthesis and characterizations of new negatively charged organic-inorganic hybrid materials Part II. Membrane preparation and characterizations. [J] .Journal of Membrane Science, 247 (2005) 111-118. [11] J.A. Brant, A.E. Childress, Assessing short-range membrane–colloid interactions using surface energetics. [J] .Membr. Sci., 203 (2002) 257-273. [12] M. Demircioglu, N. Kabay, E. Ersoz, et al. Cost comparison and efficiency modeling in the electrodialysis of brine. [J] .Desalination, 136 (2001) 317-323. [13] J. Xu, G.-P. Sheng, H.-W. Luo et al. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. [J] .Water Research, 46 (2012) 1817-1824. [14] 陈珊,李永明,于水利, 聚合物对离子交换膜脱盐性能的影响及其污染特性. [J] .中国给水排水, (2013) 29-33. [15] H.J. Lee, J.H. Choi, J.W. Cho et al. Characterization of anion exchange membranes fouled with humate during electrodialysis. [J] .Journal of Membrane Science, 203 (2002) 115-126. [16] E. James Watkins, P.H. Pfromm, Capacitance spectroscopy to characterize organic fouling of electrodialysis membranes, Journal of Membrane Science, 162 (1999) 213-218. [17] J.S. Park, T.C. Chilcott, H.G.L. Coster, S.H. Moon, Characterization of BSA-fouling of ion-exchange membrane systems using a subtraction technique for lumped data, J. Membr. Sci., 246 (2005) 137-144. [18] N. Tanaka, M. Nagase, M. Higa. Preparation of aliphatic-hydrocarbon-based anion-exchange membranes and their anti-organic-fouling properties. [J] .Journal of Membrane Science, 384 (2011) 27-36. [19] N. Tanaka, M. Nagase, M. Higa, Organic fouling behavior of commercially available hydrocarbon-based anion-exchange membranes by various organic-fouling substances. [J] .Desalination, 296 (2012) 81-86. [20] C. Casademont, M.A. Farias, G. Pourcelly, L. Bazinet, Impact of electrodialytic parameters on cation migration kinetics and fouling nature of ion-exchange membranes during treatment of solutions with different magnesium/calcium ratios. [J] .Membr. Sci., 325 (2008) 570-579. [21] N. Cifuentes-Araya, G. Pourcelly, L. Bazinet, Water splitting proton-barriers for mineral membrane fouling control and their optimization by accurate pulsed modes of electrodialysis. [J] . Membr. Sci., 447 (2013) 433-441. [22] K. Urano, Y. Masaki, Y. Naito, Increase in electric resistance of ion-exchange membranes by fouling with naphthalenemonosulfonate. [J] .Desalination, 58 (1986) 177-186. [23] Q. Ping, B. Cohen, C. Dosoretz, Z. He, Long-term investigation of fouling of cation and anion exchange membranes in microbial desalination cells. [J] .Desalination, 325 (2013) 48-55. [24] G.L. Jing, X.Y. Wang, H. Zhao, Study on TDS removal from polymer-flooding wastewater in crude oil: extraction by electrodialysis. [J] .Desalination, 244 (2009) 90-96. [25] G.L. Jing, L.J. Xing, Y. Liu, W.T. Du, C.J. Han, Development of a four-grade and four-segment electrodialysis setup for desalination of polymer-flooding produced water. [J] .Desalination, 264 (2010) 214-219. [26] 陈绍炳, 李学军, 部分水解聚丙烯酰胺的水溶液性质. [J] .油田地面工程, (1991) 36-41+35. [27] 营谷良雄,市田一郎,实方清成等. 阴离子交换膜. 中国专利,CN1017594 B, 1992-07029. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号