不对称静电场强化膜蒸馏过程研究 |
作者:苗成朋1,杜文林1,陈佳1,孟慧琳2,石雪莉2,王南南1,杜润红1 |
单位: 1. 天津工业大学分离膜与膜过程国家重点实验室,天津300160; 2.中国膜工业协会,北京 100029 |
关键词: 膜蒸馏;静电场;电位梯度 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2016,36(2):55-59 |
摘要: |
本文通过在膜蒸馏系统中附加不对称静电场,利用极性分子在不对称静电场中的取向和定向迁移,使水分子受到压力梯度和电位梯度两个推动力的耦合作用,在压力场与不对称静电场形成的耦合场中,提高水分子的渗透速率。对于离子或大分子等不能挥发的物质,静电场的有无对这些物质的传质基本无影响,因此引入不对称静电场可在提高渗透通量的同时,提高过程的分离性能。本文考察了耦合场膜蒸馏过程中水分子的传质规律,并以盐水溶液、染料水溶液、天然产物水溶液为例,探讨了该过程在海水淡化、废水处理以及热敏性物质浓缩应用中的特性。 |
Polar molecules orient and migrate in an asymmetric electric field. Providing an asymmetric electric field across a membrane in a membrane distillation process for water treatment, thetransport of water will be driven by the pressure gradient and the electric potential gradient, and thus the water permeation will be accelerated in the pressure-electric coupled field. Salts and macromolecules are nonvolatile and thetransport of these solutes willnot be affected by the electric field. Therefore, by applying the asymmetric electric field, both the water flux and the separation can be improved. The mass transport of water molecules in the coupled field was investigated, andthe applications of the asymmetric electric fieldenhanced membrane distillation for desalination, treatment of dye solutions and concentration of thermal-sensitive compounds were alsoevaluated. |
基金项目: |
国家自然科学基金青年基金项目(21206122) |
作者简介: |
苗成朋,男,硕士研究生,主要从事不对称静电场强化膜分离过程的研究 *通讯作者:durunhong@tjpu.edu.cn, |
参考文献: |
[1] El-Bourawi MS, Ding Z, Ma R, Khayet M. A framework for better understanding membrane distillation separation process [J]. J MembrSci,2006, 285: 4-29. [2] 吴庸烈.膜蒸馏技术及其应用进展[J]. 膜科学与技术,2003,23(4):67-79. [3] 吕晓龙. 膜蒸馏过程探讨[J]. 膜科学与技术,2010,30(3):1-10. [4] 秦英杰,刘立强,何菲,等. 内部热能回收式多效膜蒸馏用于海水淡化及浓盐水深度浓缩[J]. 膜科学与技术,2003,32(2):52-58. [5] Curcio E, Drioli E. Membrane distillation and related operations [J]. SepPurifRev, 2005, 34: 35-86. [6] Ding Z, Liu L, Yu J, Ma R, Yang Z. Concentrating the extract of traditional Chinese medicine by direct contact membrane distillation [J]. JMembrSci, 2008, 310: 539-549. [7] Criscuoli A, Zhong J, Figoli A, Carnevale MC, Huang R, Drioli E. Treatment of dye solutions by vacuum membrane distillation [J]. Wat Res, 2008, 42: 5031-5037. [8] Criscuoli A, Carnevale MC, Drioli E. Evaluation of energy requirements in membrane distillation [J]. ChemEngProc, 2008, 47: 1098-1105. [9] Susanto H. Towards practical implementations of membrane distillation [J]. ChemEngProc, 2011, 50: 139-150. [10] Ali MT, Fath HES, Armstrong PR. A comprehensive techno-economical review of indirect solar desalination [J]. Renew SustEnerg Rev, 2011, 15: 4187-4199. [11] Essalhi M, Khayet M. Self-sustained webs of polyvinylidene fluoride electrospunnanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation [J]. J MembrSci, 2013, 433: 167-179. [12] Wang P, Teoh MM, Chung T-S. Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance [J]. Wat Res, 2011, 45: 5489-5500. [13] Wang P, Chung T-S. A new-generation asymmetric multi-bore hollow fiber membrane for sustainable water production via vacuum membrane distillation [J]. Environ SciTechnol, 2013, 47: 6272-6278. [14] Qtaishat M, Khayet M, Matsuura T. Guidelines for preparation of higher flux hydrophobic/hydrophilic composite membranes for membrane distillation [J]. J MembrSci, 2009, 329: 193-200. [15] Zhang J, Li J-D, Duke M, Xie Z, Gray S. Performance of asymmetric hollow fibre membranes in membrane distillation under various configurations and vacuum enhancement [J]. J MembrSci, 2010, 362: 517-528. [16] Wang H, Li B, Wang L, Song S, Wang J, Feng Y, Wang S. Permeate flux curve characteristics analysis of cross-flow vacuum membrane distillation [J]. IndEngChem Res, 2012, 51: 487-494. [17] Cheng L-H, Lin Y-H, Chen J. Enhanced air gap membrane desalination by novel finned tubular membrane modules [J]. J MembrSci, 2011, 378: 398-406. [18] Yang X. Wang R. Fane AG. Novel designs for improving the performance of hollow fiber membrane distillation modules [J]. J MembrSci, 2011, 384: 52-62. [19] Pethig R. Dielectrophoresis: Status of the theory, technology, and applications [J]. Biomicrofluidics, 2010, 4: 022811. [20] Kuzyk A. Dielectrophoresis at the nanoscale [J]. Electrophoresis, 2011, 32: 2307-2313. [21] Stratmann H. Membrane separation processes: current relevance and future opportunities [J]. AIChE J, 2001, 47:1077-1087. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号