高渗透性石墨烯杂化炭膜的制备及表征
作者:张兵1,周佳玲1,吴永红1,李琳2,王同华2
单位: 1沈阳工业大学 石油化工学院,辽宁 辽阳 111003;2大连理工大学 化工学院,精细化工国家重点实验室,辽宁 大连 116024
关键词: 聚酰亚胺;炭膜;石墨烯;渗透性
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2016,36(2):7-12

摘要:
 以4, 4'-二氨基二苯醚-3, 3', 4, 4'-二苯甲酮四酸二酐(BTDA-ODA)型聚酰亚胺为前驱体,石墨烯为掺杂剂,经共混、成膜、干燥和热解过程制备了杂化炭膜。采用热失重、扫描电镜、X射线衍射、红外光谱及渗透等技术分别对前驱体热稳定性、炭膜微观形貌、微观结构、表面基团和气体分离性能进行了分析。考察了石墨烯含量对炭膜微结构与性能的影响。结果显示,引入石墨烯使前驱体热稳定性提高;石墨烯与炭膜母体间兼容性良好,在大幅度提高气体渗透性同时保持了较好的分子筛分能力;掺杂石墨烯后,使炭膜对H2,CO2与O2的渗透性分别提高了6.8倍,46倍和59倍。当石墨烯用量为0.5%时,杂化炭膜对CO2渗透性达1236.7 Barrer,此时CO2/N2选择性达24.1,具有较好的应用前景。
 Hybrid carbon membranes were prepared by using 4, 4'-diaminodiphenyl ether -3, 3 ', 4, 4'-benzophenone tetracarboxylic dianhydride (BTDA-ODA) polyimide as precursor ang graphene as dopant, via the processes of blending, membrane-forming, drying and pyrolysis. The TG, SEM, XRD, IR and gas permeation technique were respectively applied to characterize the thermal stability of precursor, and the morphology, microstructure, surface chemical moieties and separation performance of carbon membranes. The effects of graphene content on the microstructure and properties of carbon membrane were investigated. Results show that the introduction of graphene leads to the enhancement of thermal stability of precursors. The resultant hybrid carbon membranes have both excellent permeability and molecular sieving ability due to the fairly well compatibility between graphene and membrane matrix. The gas permeability of hybrid carbon membranes is respectively increased by 6.8 times for H2, 46 times for CO2 and 59 times for O2. When the amount of graphene is 0.5%, the hybrid carbon membranes reveal attractive gas separation performance commercially, i.e., CO2 permeability of 1236.7 Barrer and CO2/N2 selectivity of 24.1.

基金项目:
国家自然科学基金(20906063,21436009,21276035,21376037,21576035,21506020),辽宁省自然科学基金(20102170),辽宁省高校杰出青年学者培养计划项目(LJQ2012010),中国博士后第56批科学基金(2014M561232)和精细化工国家重点实验室开放基金(KF1107)。

作者简介:
张兵(1977-),男,辽宁辽阳人,博士,教授,主要从事气体分离炭膜的制备与应用基础研究. *通讯作者,E-mails: bzhangdut@163.com, wangth@dlut.edu.cn.

参考文献:
 [1] Chen X, Khoo K G, Kim M W, et al. Deriving a CO2-permselective carbon membrane from a multilayered matrix of polyion complexes [J]. ACS Appl Mater Interfaces, 2014, 6(13): 10220-10230.
[2] Xu L, Rungta M, Hessler J, et al. Physical aging in carbon molecular sieve membranes [J]. Carbon, 2014, 80: 155-166.
[3] Favvas E P. Carbon dioxide permeation study through carbon hollow fiber membranes at pressures up to 55bar [J]. Sep Purif Technol, 2014, 134: 158-162.
[4] Teixeira M, Rodrigues S C, Campo M, et al. Boehmite-phenolic resin carbon molecular sieve membranes—Permeation and adsorption studies [J]. Chem Eng Res Des, 2014, 92(11): 2668-2680.
[5] Wang H B, Lin Y S. Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance [J]. J Membr Sci, 2012, 396: 128-137.
[6] Park H. Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes [J]. J Membr Sci, 2004, 229(1-2): 117-127.
[7] Kim Y, Park H, Lee Y. Preparation and characterization of carbon molecular sieve membranes derived from BTDA–ODA polyimide and their gas separation properties [J]. J Membr Sci, 2005, 255(1-2): 265-273.
[8] Zhang B, Shi Y, Wu Y H, et al. Towards the preparation of ordered mesoporous carbon/carbon composite membranes for gas separation [J]. Sep Sci Technol, 2014, 49(2): 171-178.
[9] Zhang B, Wu Y, Lu Y, et al. Preparation and characterization of carbon and carbon/zeolite membranes from ODPA–ODA type polyetherimide [J]. J Membr Sci, 2015, 474: 114-121.
[10] Wang W, Eftekhari E, Zhu G, et al. Graphene oxide membranes with tunable permeability due to embedded carbon dots [J]. Chem Commun, 2014, 50(86): 13089-13092.
[11] Salleh W N W, Ismail A F, Matsuura T, et al. Precursor selection and process conditions in the preparation of carbon membrane for gas separation: a review [J]. Sep Purif Rev, 2011, 40(4): 261-311.
[12] 陈莹莹, 宓一鸣, 阮勤超, 等. 石墨烯的制备及应用的研究进展 [J]. 硅酸盐通报, 2015, (3): 755-763.
[13] Wang L, Corriou J P, Castel C, et al. A critical review of cyclic transient membrane gas separation processes: State of the art, opportunities and limitations [J]. J Membr Sci, 2011, 383(1-2): 170-188.
[14] 余小霞, 吴新宇, 王海风. 石墨烯/聚酰亚胺复合材料研究进展 [J]. 现代化工, 2015, (4): 33-37.
[15] 赵冬梅, 李振伟, 刘领弟, 等. 石墨烯/碳纳米管复合材料的制备及应用进展 [J]. 化学学报, 2014, (2): 185-200.
[16] Niyogi S, Adhikari B. Preparation and characterization of a polyimide membrane [J]. Eur Polym J, 2002, 38(6): 1237-1243.
[17] 张兵, 于智学, 石毅, 等. BPDA-ODA型聚酰亚胺基沸石杂化炭膜的制备及气体分离性能 [J]. 膜科学与技术, 2013, (3): 33-38.
[18] 石毅. 成膜过程对炭膜微结构与气体分离性能的影响 [D]. 沈阳:沈阳工业大学,2014, 54-55.
[19] Robeson L M. Correlation of separation factor versus permeability for polymeric membranes [J]. J Membr Sci, 1991, 62(2): 165-185.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号