氧化石墨烯与纳米二氧化钛共混改性PES超滤膜的对比分析 |
作者:赵永军1,李方1,2?,李佳峰1,马春燕1,2 |
单位: 1.东华大学环境科学与工程学院,上海 201620; 2.国家环境保护纺织工业污染防治工程技术中心,上海 201620 |
关键词: GO;nano-TiO2;共混改性超滤膜;对比 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2016,36(3):13-20 |
摘要: |
为了改善膜的分离性能,本文采用氧化石墨烯(GO)与纳米二氧化钛(nano-TiO2)对聚醚砜(PES)超滤膜进行共混改性,将GO和nano-TiO2单独或按比例添加到PES铸膜液中,分别考察了不同共混改性超滤膜分离性能和抗污染性能,并通过热失重分析仪等表征手段对膜进行了分析,利用纯水和模拟污染物进行了通量测试。试验结果表明:共混改性后超滤膜热稳定性增强、指状孔道变大、上表面粗糙度减小。通过对比分析,可知GO和nano-TiO2共同共混改性的超滤膜(0.8%GO+0.2%nano-TiO2)性能最优,纯水通量可达260LMH,相较于纯PES膜,通量增加了52.1%,静态接触角可达54.7°,BSA和SA模拟污染物过滤180min后,膜的稳定通量分别保持在67.8和68.0LMH左右, 截留率均可达99%以上。 |
In order to improve the separation performance of ultrafiltration (UF) membranes, PES UF membranes were modified by blending with nano-TiO2 and graphene oxide in this paper. The casting solution of PES was blended with GO and nano-TiO2 or either of them in different loading, and the separation performance and anti-fouling ability of the modified membranes were investigated. The modified membranes were characterized by the analysis methods such as thermal gravity. The water flux measurements were conducted by using the pure water and simulated foulant solution. The results showed that the thermal stability was improved, the mean pore size was increased, and the surface roughness was smaller than that of the modified membranes. Compared to another blending modification reports, the PES ultrafiltration membrane loading GO and nano-TiO2(0.8%GO+0.2%nano-TiO2) have the optimal performance in permeability. The pure water flux of the membrane with 0.8%GO+0.2%nano-TiO2 reached 260LMH, up to 52.1% higher than pristine ultrafiltration membrane, and the contact angle reached 54.7°. During the 180min’s filtration tests of BSA and SA solution, the stable flux reached 67.8 and 68.0LMH respectively, and both of the rejections were more than 99%. |
基金项目: |
国家自然科学基金(51478099),中央高校基本科研业务费专项资金(223215A3-04) |
作者简介: |
赵永军(1989-),男,硕士研究生,从事膜法水处理研究。通讯作者,Email:lifang@dhu.edu.cn |
参考文献: |
[1]Buonomenna M G. Membrane processes for a sustainable industrial growth[J]. RSC advances, 2013, 3(17): 5694-5740. [2]Razmjou A, Mansouri J, Chen V, et al. Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process[J]. Journal of Membrane Science, 2011, 380(1): 98-113. [3]汪帅, 李方, 李勇, 等. 采用聚合左旋多巴涂覆及MPEG-NH2接枝对PVDF膜亲水改性的研究[J]. 膜科学与技术, 2015, 35(1): 42-48. [4]Cen L, Neoh K G, Ying L, et al. Surface modification of polymeric films and membranes to achieve antibacterial properties[J]. Surface and interface analysis, 2004, 36(8): 716-719. [5]Lu X, Romero-Vargas Castrillon S, Shaffer D L, et al. In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance[J]. Environmental science technology, 2013, 47(21): 12219-12228. [6]Wan T X, Zhi P Z, Min L, et al. Morphological and hydrophobic modification of PVDF flat membrane with silane coupling agent grafting via plasma fow for VMD of ethanol-water mixture[J]. Journal of Membrane Science, 2015, 491: 110-120. [7]邵冰, 柳丽芬, 杨凤林. PVDF/PDA共混膜的制备及其性能研究[J]. 膜科学与技术, 2014, 34(1): 57-61. [8]王欣,王磊,黄丹曦,等. PVDF/SiO2超滤膜抗污染特性的微观作用力分析[J]. 膜科学与技术, 2014, 34(5): 73-78. [9]Jian P, Yahui H, Yang W, et al. Preparation of polysulfone–Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field[J]. Journal of membrane science, 2006, 284(1): 9-16. [10]韩鸣啸,杨亚楠,马晓雨. P溶胶-凝胶法制备聚醚砜/TiO2杂化膜[J]. 膜科学与技术, 2013, 33(4): 12-16. [11]李健生, 梁祎, 王慧雅, 等. TiO2/PVDF 复合中空纤维膜的制备和表征[J]. 高分子学报, 2004, 1(5): 709-712. [12]孙鸿. 纳米 TiO2+ Al2O3/PVDF 超滤膜的制备及应用研究[D]. 东北石油大学, 2013. [13] Lee J, Chae H R, Won Y J, et al. Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment[J]. Journal of Membrane Science, 2013, 448: 223-230. [14] 李瑞云. 氧化石墨烯对聚合物分离膜的亲水改性研究[D]. 大连理工大学, 2012. [15] Ganesh B M, Isloor A M, Ismail A F. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane[J]. Desalination, 2013, 313: 199-207. [16] 刘洋,邵路,等.TiO2/GO 纳米材料的制备及其超滤膜的性能研究[D]. 哈尔滨工业大学, 2013. [17] 邹正光,俞惠江,等.超声辅助Hummers法制备氧化石墨烯[J]. 桂林理工大学, 2011, 27: 1753-1757. [18] Yuliwati E, Ismail A F. Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment[J]. Desalination, 2011, 273(1): 226-234. [19]李赛赛,高学理,王智,等. 季铵盐壳聚糖/聚砜复合纳滤膜的制备及性能[J]. 膜科学与技术, 2013, 33(3): 44-48. [20]Mahadie S,Alieza K,Vahid V.Effect of reduced grapheme/TiO2nanocomposite with different molar ratios on the perfprmance of PVDF ultrafiltration membranes[J]. Separation and Purification Technology, 2015, 140: 32-42. [21] Zinadini S, Zinatizadeh A A, Rahimi M, et al. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates[J]. Journal of Membrane Science, 2014, 453: 292-301. [22]Liu, Yang, et al. "Synthesis of sulfonated polyphenylsulfone as candidates for antifouling ultrafiltration membrane." Separation and Purification Technology98 (2012): 298-307. [23]Yu L, Zhang Y, Zhang B, et al. Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties[J]. Journal of Membrane Science, 2013, 447: 452-462. [24] Szabo T, Tombácz E, Illés E, et al. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides[J]. Carbon, 2006, 44(3): 537-545. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号