基于2,2’,4,4’-联苯四甲酰氯与均苯三甲酰氯的反渗透复合膜制备及性质研究 |
作者:代磊1,2,张志广1,张所波 |
单位: 1.中国科学院长春应用化学研究所,中国科学院生态环境高分子材料重点实验室,长春130022; 2.中国科学院大学,北京100049 |
关键词: 反渗透复合膜;2,2’,4,4’-联苯四甲酰氯;均苯三甲酰氯;界面聚合 |
DOI号: |
分类号: P747;TQ028.8 |
出版年,卷(期):页码: 2016,36(4):1-6 |
摘要: |
以2,2’,4,4’-联苯四甲酰氯(BTEC)和均苯三甲酰氯(TMC)为有机相功能单体,与间苯二胺(MPD)通过界面缩聚反应制备了一系列反渗透复合膜。系统研究了BTEC的加入对复合膜活性分离层表面化学组成、表面形貌、亲水性及分离性能的影响。结果表明:BTEC的加入,所制得的反渗透复合膜表面趋于平滑,水通量略有降低,脱盐率则由99.42%提高至99.63%。 |
A serie of reverse osmosis (RO) composite membranes was prepared by interfacial polymerization of 2,2’,4,4’-biphenyl tetraacyl chloride (BTEC)/ trimesoyl chloride (TMC) as organic-phase monomers and 1,3-phenylene diamine (MPD). The effects of surface chemical composition, surface morphology, hydrophilicity and separation performance were systematically investigated by incorporating BTEC. The results showed that smooth polyamide structures were formed, the salt rejection of the RO membranes increased from 99.42% to 99.63% while the permeability just experienced a little decrease. |
基金项目: |
国家重大基础研究“973” 计划(2015CB655302) |
作者简介: |
第一作者简介: 代 磊(1982- ),男,吉林省长春,硕士研究生,助理研究员,研究方向为反渗透复合膜制备工艺优化及应用, 通讯作者,Email: sbzhang@ciac.ac.cn |
参考文献: |
[1] 吴礼光, 周勇, 张林, 陈欢林, 高从堦. 反渗透复合膜功能材料研究进展[J]. 化学进展, 2008, 20(7/8):1216-1221. [2] Larson R E, Cadotte J E, Petersen R J. The FT-30 seawater reverse osmosis membrane--element test results [J]. Desalination, 1981, 38:473-483. [3] Rana D, Matsuura T. Surface modifications for antifouling membranes [J]. Chem. Rev., 2010, 110:2448-2471. [4] Kang G D, Cao Y M. Development of antifouling reverse osmosis membranes for water treatment: A review [J]. Water Research, 2012, 46:584-600. [5] Li L, Zhang S B, Zhang X S, Zheng G D. Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine [J]. J. Membr. Sci., 2008, 315:20-27. [6] Wang T Y, Dai L, Zhang Q F, Li A, Zhang S B. Effects of acyl chloride monomer functionality on the properties of polyamide reverse osmosis (RO) membrane [J]. J. Membr. Sci., 2013, 440:48-57. [7] Kwak S Y, Jung S G, Yoon Y S, Ihm D W. Details of surface features in atomatic polyamide reverse osmosis membrane characterized by scanning electron and atomic force microscopy [J]. J. Polym. Sci.: Part B 37, 1999:1429-1440. [8] Jeshi S A, Neville A. An investigation into the relationship between flux and roughness on RO membranes using scanning probe microscopy. Desalination 2006, 189:221-228. [9] Ghosh A K, Jeong B H, Huang X F, Hoek E M V. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties [J]. J. Membr. Sci., 2008, 311:34-45. [10] Morgan P W. Condensation Polymers: By Interfacial and Solution Methods [M]. New York, 1965:20-30. [11] P.W. Morgan. Interfacial Polycondensation [J]. J. Polym. Sci., 1959:289-327. [12] Song Y J, Sun P, Henry L L, Sun B. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process [J]. J. Membr. Sci., 2005, 251:67. [13] Chai G Y, Krantz WB. Formation and characterization of polyamide membranes via interfacial polymerization [J]. J. Membr. Sci., 1994, 93:175. [14] Liu M H, Wu D H, Yu S C, Gao C J. Influence of the polyacyl chloride structure on the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membranes [J]. J. Membr. Sci., 2009, 326:205-214. [15] Kwak S Y, Jung S G, Kim S H. Structure-Motion-Performance of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin film [J]. Environ. Sci. Technol. 2001, 35:4334-4340. [16] Hirose M, Ito H, Kamiyama Y. Effect of skin layer surface structures on the flux behavior of RO membranes [J]. J. Membr. Sci., 1996, 121:209-215. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号