正渗透膜的非平衡热力学膜特征参数解析 |
作者:边丽霞,方彦彦,王晓琳 |
单位: 清华大学 化学工程系 膜材料与工程北京市重点实验室,北京 100084 |
关键词: 非平衡热力学;正渗透膜;膜特征参数;传递现象;渗透压驱动膜过程 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2016,36(4):75-83 |
摘要: |
基于非平衡热力学用三个独立的膜特征参数(纯水透过系数,反射系数和溶质透过系数)分析了在水力学压力驱动和渗透压驱动膜过程中溶剂水和溶质的传递现象。为了考察这些膜特征参数在两种不同驱动力驱动的膜过程中的一致性,我们用不同的方法确定了同一张正渗透膜分离层的膜特征参数。首先,通过几种中性溶质在水力学压力驱动膜过程中的截留率确定了膜特征参数。其次,使用相同的中性溶质作为渗透压驱动膜过程中的驱动溶质,通过实验得到溶剂水的体积通量和溶质的摩尔通量,结合通量数据和非平衡热力学模型,再次得出这几种溶质的膜特征参数。结果表明,两种方法得到的膜特征参数一致性较好。这有助于我们进一步理解渗透压驱动膜过程中的传递现象,以及它与水力学压力驱动膜过程的差别。 |
Transport phenomena of a forward osmosis membrane in both hydraulic and osmotic pressure driven membrane processes were analyzed by three independent membrane parameters based on nonequilibrium thermodynamics. To examine the uniformity of these parameters in membrane processes operated by different driving forces, we determined the membrane parameters of the same membrane active layer using independent methods. First, the membrane parameters were determined from rejection data of several neutral solutes in hydraulic pressure driven mode experiments. Second, the water volumetric flux and solute molar flux of the same neutral draw solutes were investigated in osmotic pressure driven mode experiments. The membrane parameters for these solutes were obtained based on the flux data and the nonequilibrium thermodynamic model. The results revealed good agreement between the two methods and contribute to further understanding the transport phenomenon in FO process and its difference from hydraulic pressure driven membrane processes. |
基金项目: |
国家高技术研究发展计划(863)项目(批准号:2012AA03A604) |
作者简介: |
第一作者简介:边丽霞(1986-),女,河北人,硕士研究生,主要研究方向为正渗透膜过程传质和动电现象,E-mail: blxlydia@126.com *通讯作者E-mail:xl-wang@tsinghua.edu.cn. |
参考文献: |
[1] Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments[J]. J Membr Sci, 2006, 281: 70-87. [2] Zhao S F, Zou L, Tang C Y Y, et al. Recent developments in forward osmosis: Opportunities and challenges[J]. J Membr Sci, 2012, 396: 1-21. [3] McCutcheon J R, Elimelech M. Desalination by ammonia-carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance[J]. J Membr Sci, 2006, 278: 114-123. [4] Holloway R W, Childress A E, Dennett K E, et al. Forward osmosis for concentration of anaerobic digester centrate[J]. Water Res, 2007, 41: 4005-4014. [5] Xie M, Nghiem L D, Price W E, et al. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis[J]. Water Res, 2012, 46: 2683-2692. [6] Petrotos K B, Quantick P, Petropakis H. A study of the direct osmotic concentration of tomato juice in tubular membrane-module configuration. ?. The effect of certain basic process parameters on the process performance[J]. J Membr Sci, 1998, 150: 99-110. [7] Petrotos K B, Lazarides H N. Osmotic concentration of liquid foods[J]. J Food Eng, 2001, 49: 201-206 [8] Lee K L, Baker R W, Lonsdale H K. Membrane for power-generation by pressure-retarded osmosis[J]. J Membr Sci, 1981, 8: 141-171. [9] Loeb S. Large-scale power production by pressure-retarded osmosis, using river water and sea water passing through spiral modules[J]. Desalination, 2002, 143: 115-122. [10] McCutcheon J R, Elimelech M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes[J]. J Membr Sci, 2008, 318: 458-466. [11] Gray G T, McCutcheon J R, Elimelech M. International concentration polarization in forward osmosis: role of membrane orientation[J]. Desalination, 2006, 197: 1-8. [12] Babu B R, Rastogi N K, Raghavarao K S M S. Effect of process parameters on transmembrane flux during direct osmosis[J]. J Membr Sci, 2006, 280: 185-194. [13] Bamaga O A, Yokochi A, Beaudry E G. Application of forward osmosis in pretreatment of seawater for small reverse osmosis desalination units[J]. Desalin Water Treat, 2009, 5: 183-191. [14] Zhao S, Zou L. Relating solution physicochemical properties to internal concentration polarization in forward osmosis[J]. J Membr Sci, 2011, 379: 459-467. [15] Achilli A, Cath T Y, Childress A E. Selection of inorganic-based draw solutions for forward osmosis applications[J]. J Membr Sci, 2010, 364: 233-241. [16] McCutcheon J R, Elimelech M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J]. J Membr Sci, 2006, 284: 237-247. [17] Zhao S, Zou L. Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination[J]. Desalination, 2011, 278: 157-164. [18] Tang C Y Y, She Q H, Lay W C L, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration[J]. J Membr Sci 2010, 354: 123-133. [19] Hancock N T, Cath T Y. Solute coupled diffusion in osmotically driven membrane processes[J]. Environ Sci Technol, 2009, 43: 6769-6775. [20] Phillip W A, Yong J S, Elimelech M. Reverse draw solute permeation in forward osmosis: modeling and experiments[J]. Environ Sci Technol, 2011, 44: 5170-5176. [21] Hancock N T, Phillip W A, Elimelech M, et al. Bidirectional permeation of electrolytes in osmotically driven membrane processes[J]. Environ Sci Technol, 2011, 44: 10642-10651. [22] Yong J S, Phillip W A, Elimelech M. Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes[J]. J Membr Sci, 2012, 392-393: 9-17. [23] Sagiv A, Semiat R. Finite element analysis of forward osmosis process using NaCl solutions[J]. J Membr Sci, 2011, 379: 86-96. [24] Li W, Gao Y, Tang C Y. Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis: Model development and theoretical analysis with FEM[J]. J Membr Sci, 2011, 379: 307-321. [25] Gruber M F, Johnson C J, Tang C Y, et al. Computational fluid dynamics simulation of flow and concentration polarization in forward osmosis membrane systems[J]. J Membr Sci, 2011, 379: 488-495. [26] Jung D H, Lee J, Kim D Y, et al. Simulation of forward osmosis membrane process: effect of membrane orientation and flow direction of feed and draw solution[J]. Desalination, 2011 277: 83-91. [27] Spiegler K S, Kedem O. Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes[J]. Desalination, 1966, 1: 311-326. [28] Perry M, Linder C. Intermediate reverse osmosis ultrafiltration (RO UF) membranes for concentration and desalting of low molecular weight organic solutes[J]. Desalination, 1989, 71: 233-245. [29] Koyuncu I. Influence of dyes, salts and auxiliary chemicals on the nanofiltration of reactive dye baths: experimental observations and model verification[J]. Desalination, 2003, 154: 79-88. [30] Vakili-Nezhaad G, Akbari Z. Modification of the extended Spiegler-Kedem model for simulation of multiple solute systems in nanofiltration process[J]. Desalin Water Treat, 2011, 27: 189-196. [31] Kedem O, Freger V. Determination of concentration-dependent transport coefficients in nanofiltration: Defining an optimal set of coefficients[J]. J Membr Sci, 2008, 310: 586-593. [32] Bason S, Kedem O, Freger V. Determination of concentration-dependent transport coefficients in nanofiltration: Experimental evaluation of coefficients[J]. J Membr Sci, 2009, 326: 197-204. [33] Katchalsky A, Curran P F. Nonequilibrium thermodynamics in biophysics, Harvard University Press, 1965. [34] Su J, Chung T S. Sublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in FO process[J]. J Membr Sci, 2011, 376: 214-224. [35] Porter M C. Concentration polarization with membrane ultrafiltration[J]. Ind Eng Chem Prod Res Develop, 1972, 11: 234-248. [36] Mulder M. Basic principles of membrane technology[M]. 2nd edition, Kluwer Academic Publishers, Dordrecht, 1996. [37] Maruo A. Some Properties of Ionic and Nonionic Semipermeable Membranes[J]. Circulation, 1960, 21: 845-854. [38] Staverman A J. The theory of measurement of osmotic pressure[J]. Recueil des Travaux Chimiques des Pays-Bas, 1951, 70: 344-352. [39] Anderson J, Malone D. Mechanism of osmotic flow in porous membranes[J]. Biophysical Journal, 1974, 14: 957-982. [40] Robbins E, Mauro A. Experimental study of the independence of diffusion and hydrodynamic permeability coefficients in collodion membranes[J]. J Gen Physiol, 1960, 43: 523-532. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号