聚氧化乙烯对聚偏氟乙烯成膜结构和性能影响
作者:吴春凤,吕晓龙,武春瑞,高启君,王暄,陈华艳,贾悦
单位: 省部共建分离膜与膜过程国家重点实验室,生物化工研究所,天津工业大学,天津 300387
关键词: 聚偏氟乙烯;血浆分离;聚氧化乙烯;微孔膜
出版年,卷(期):页码: 2016,36(5):40-46

摘要:
 小分子量亲水性添加剂在成膜过程中易流失,添加大量添加剂虽然可以生成大孔结构,但成膜力学性能较差。选用分子量较大的聚氧化乙烯(PEO)部分取代原小分子的聚乙二醇(PEG400)作为亲水性添加剂和致孔剂,采用干-湿相转化法研制聚偏氟乙烯(PVDF)中空纤维血浆分离膜,以期获得大孔径和亲水性好的PVDF分离膜。考察PEO在添加剂中含量对PVDF膜形态结构和性能的影响。结果表明,随着PEO在添加剂中含量的增加,PVDF膜的分离孔径尺寸从0.245μm增加至0.602μm,获得了预期的更大孔径的膜,并且PVDF膜纯水通量呈现先增大后减小趋势,最高可达到1117L•m-2•h-1。添加适量PEO后,PVDF膜的机械性能变化不明显。同时从PVDF改性膜的红外光谱图(ATR-FTIR)和洗脱性实验中证明了大分子添加剂PEO可残留在膜内,从而有效地提高了膜的亲水性。
 Hydrophilicsmall molecular weight additive is easily lost in the membranes, and the pore size of the membranes is not big enough. Poly (vinylidene fluoride) (PVDF) hollow fiber plasmapheresis membranes were fabricated by dry/wet phase inversion with adding the hydrophilic macromolecular polyethylene oxide (PEO) and small molecular polyethylene glycol (PEG400). It studied different compound ratio of the PEO and PEG400 on structure and performance of PVDF membrane. The results showed that it could increase the separate aperture with the increase of the PEO content. The separate aperture increased from 0.245μm to 0.602μm.And membrane water flux had a decreasing trend after increasing first. And the highest water flux could reach 1117 L•m-2•h-1. Also mechanical properties changed little. The attenuated total reflectance Fourier transform infrared spectra(ATR-FTIR) analysis and elution experiments confirmed that the PEO macromolecular additives remained within the PVDF modified membrane, which can effectively  improve hydrophilicity of the membrane. 
第一作者简介:吴春凤(1989-),女,山东菏泽人,在读硕士,师承吕晓龙教授,从事膜材料在生物医学领域的应用。*通讯作者:吕晓龙,E-mail:luxiaolong@263.net

参考文献:
 [1] Sukitpaneenit P, Chung TS. Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology[J]. Journal of Membrane Science, 2009, 340(1-2):192–205.
[2] 吕晓龙,赵卫光,胡成松,等.聚偏氟乙烯中空纤维表面化学改性[J].天津纺织工学学报,1999,18(4):8-11.
[3] Khayet M, Feng CY, Khulbe KC, et al. Preparation and characterization of polyvinylidene fluoride hollow fiber membranes for ultrafiltration[J]. Polymer, 2002, 43(14):3879–3890.
[4] 宋春亮, 曹义鸣, 介兴明,等. PSf对提高PVDF/PSf/TiO2共混膜抗污染性的作用[J]. 膜科学与技术, 2010, 30(4):14-18.
[5] Lazos D, Franzka S, Ulbricht M. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.[J]. Langmuir, 2005, 21(19):8774-8784.
[6] Wavhal DS, Fisher ER. Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization[J]. Journal of Membrane Science, 2002, 209(1):255-269.
[7] Astrid R, Mei H C V D, Busscher H J, et al. Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature.[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2004, 20(25):10949-10955.
[8] Zdyrko B, Klep V, LuzinovI. Synthesis and Surface Morphology of High-Density Poly(ethylene glycol) Grafted Layers[J]. Langmuir, 2003, 19(24):10179-10187.
[9] Xu Z K, Nie FQ, Qu C, et al. Tethering poly(ethylene glycol)s to improve the surface biocompatibility of poly(acrylonitrile-co-maleic acid) asymmetric membranes.[J]. Biomaterials, 2005, 26(26):589-598.
[10] Hancock L F, Fagan S M, Ziolo M S. Hydrophilic, semipermeable membranes fabricated with poly(ethylene oxide)-polysulfone block copolymer.[J]. Biomaterials, 2000, 21(7):725-733.
[11] Chakrabarty B, Ghoshal A K, Purkait M K. Effect of molecular weight of PEG on membrane morphology and transport properties[J]. Journal of Membrane Science, 2008, 309(1-2):209–221.
[12] Suanto H, Ulbricht M. Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method usingdifferent macromolecular additives[J].Journal of Membrane Science,2009,327(1-2):125-135.
[13] Adout A, Kang S, Asatekin A, et al. Ultrafiltration membranes incorporating amphiphilic comb copolymer additives prevent irreversible adhesion of bacterica[J]. Environ. Sci. Technol,2010,44 (7):2406-2411.
[14] Asatekin A, Mayes A M. Oil industry wastewater treatment with fouling resistant membranes containing amphiphilic comb copolymers [J].Environ. Sci. Technol, 2009, 43 (12): 4487-4492.
[15] Hancock L F, Fagan S M, Ziolo M S. Hydrophilic, semipermeable membranes fabricated with poly(ethyleneoxide)-polysulfone block copolymer.[J]. Biomaterials, 2000, 21 (7): 725-733.
[16] Zhao W, Su Y, Li C, et al. Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent[J]. Journal of Membrane Science, 2008, 318(1-2):405-412.
[17] 吕晓龙.中空纤维多孔膜性能评价方法探讨[J].膜科学与技术, 2011, 34(2):1-6.
[18] 吕晓龙.聚偏氟乙烯中空纤维膜纺丝添加剂的研究[J].天津工业大学学报,2005,24(5):1-4.
[19] Matsuyama H, Maki T, Teramoto M, et al. Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation[J]. Journal of Membrane Science, 2002, 204(1-2):323–328.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号