碳纳米管复合膜的制备及水处理应用研究进展
作者:董应超?1,马丽宁12,朱丽1,董新法2,张国权1,徐晓晨1,杨凤林1
单位: 1. 工业生态与环境工程教育部重点实验室,大连理工大学环境学院环境污染控制工程研究室,中国大连市凌工路2号,邮编:1160241; 2.华南理工大学化学与化工学院,中国广州市五山路381号,邮编:510641
关键词: 碳纳米管;复合膜;水处理;制备;膜分离
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2016,36(6):1-10

摘要:
 着我国城市化和工业化进程的加快,水资源短缺和水污染问题日益突出,碳纳米管复合膜由于其结合了膜材料和碳纳米管的优良性能,在水处理应用中具有良好的应用前景,已成为膜分离领域的研究热点之一。本文在简要介绍了碳纳米管的制备和生长机理的基础上,综述了碳纳米管复合膜的制备及其在海水淡化、油水分离、重金属离子和新兴污染物去除方面的应用研究进展。进而,对碳纳米管复合膜及水处理研究所面临的问题进行了简要分析,今后,研究重点主要在降低复合膜成本、膜性能改善和应用拓展方面,使其尽快在环境水处理领域推广应用。
 Because water resources scarcity and water pollution are increasingly being serious problemsduring rapid urbanization and  industrialisationin China, carbon nanotubes (CNTs)-based composite membranes have been being one popular type of separation membranes for separation application, since they combine the excellent performances of traditional membrane materials with those ofCNTs. In this paper, with a brief introduction of fabrication and growth mechanism of CNTs,research progress of both fabrication methods for CNTs-based composite membranes and some applications such as seawater desalination, oil-water separation, removal of heavy metal ions and emerging pollutionsin water are reviewed in detail. In future, key researchissues for CNTs-based composite membranes might be focused on reducing membrane cost, improving membrane performance and exploring more applications to promote its large-scale application in environmental water treatment field.  

基金项目:

作者简介:
第一作者:董应超(1980-),男,大连理工大学环境学院教授,博士生导师,主要研究方向:可持续污染控制技术,新型膜材料与膜过程,水处理技术(高级氧化,催化和吸附等)等。

参考文献:
 [1] 王建黎, 计建炳, 徐又一. 膜分离技术在水处理领域的应用 [J]. 膜科学与技术, 2003, 23: 65-68.
[2] 侯立安, 刘晓芳. 纳滤水处理应用研究现状与发展前景 [J]. 膜科学与技术, 2010, 30: 1-7.
[3] 董应超. 新型低成本多孔陶瓷分离膜的制备与性能研究 [D]. 中国科学技术大学, 2008.
[4] 杨皓程, 陈一夫, 叶辰, 等. 有机-无机复合多孔膜制备与应用 [J]. 化学进展, 2015, 27: 1014-1024.
[5] Mukul K, Yoshinori A. Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production [J]. Journal of Nanoscience and Nanotechnology, 2010, 10: 3739-3758.
[6] Kukovitsky E F,L’vov S G, Sainov N A. VLS-growth of carbon nanotubes from the vapor [J]. Chemical Physics Letters, 2000, 317: 65-70.
[7]Tessonnier J P,SuDang Sheng. Recent Progress on the Growth Mechanism of Carbon Nanotubes: A Review [J]. Chemsuschem, 2011, 4: 824-847.
[8] Amelinckx S, Zhang X B, Bernaerts D, et al. A Formation Mechanism for Catalytically GrownHelix-Shaped Graphite Nanotubes [J]. Science, 1994, 265: 635-639.
[9] Latorre C H, Méndez G A, García G B, et al. Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review [J]. AnalyticaChimicaActa, 2015, 853: 77-94.
[10] Belin T, Epron F. Characterization methods of carbon nanotubes: a review [J]. Materials Science and Engineering B, 2005, 119: 105-118.
[11] Dresselhaus M S, Dresselhaus G, Jorio A. Raman spectroscopy of carbon nanotubes in 1997 and 2007 [J]. Journal of Physical Chemistry C, 2007, 111: 17887-17893.
[12] 郑晗, 陈蓉, 胡华亭, 等. 化学功能化修饰碳纳米管的表征方法探究 [J]. 胶体与聚合物, 2009, 27: 37-40.
[13] Lehman J H,Terrones M, Mans?eld E, et al. Evaluating the characteristics of multiwall carbon nanotubes [J]. Carbon, 2011, 49: 2581-2602.
[14] Weisman R. Fluorimetric characterization of single-walled carbon nanotubes [J]. Analytical and Bioanalytical Chemistry, 2010, 396: 1015-1023.
[15] Maryam AT, Toraj M. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets [J]. Journal of Hazardous Materials, 2011, 185: 140-147.
[16] 邢丽, 向军辉, 张复实, 等. 碳纳米管膜的制备及其研究进展 [J]. 世界科技研究与发展, 2009, 31: 390-393.
[17] 宫晓娜, 朱利平, 徐又一, 等. 碳纳米管在分离膜材料中的应用 [J]. 膜科学与技术, 2011, 31: 89-93.
[18] Chang H A, Youngbin B, Changha L, et al. Carbon nanotube-based membranes:  Fabrication and application to desalination [J]. Journal of Industrial and Engineering Chemistry, 2012, 18: 1551-1559.
[19] 杨蕊, 程博闻, 康卫民, 等. 碳纳米管的功能化及其在复合材料中的应用 [J]. 材料导报, 2015, 29: 47-51.
[20] Andreas H. Functionalization of Single-Walled Carbon Nanotubes [J]. AngewandteChemie International Edition, 2002, 41: 1853-1859.
[21] Maryam A T, Toraj M. Nickel ions removal from water by two different morphologies of induced CNTs in mullite pore channels as adsorptive membrane [J]. Ceramics International, 2015, 41: 5464-5472.
[22] Mohammed A, Tariq A, Tushar K, et al. Carbon nanotube-nanoporous anodic alumina composite membranes with controllable inner diameters and surface chemistry: In?uence on molecular transport and chemical selectivity [J]. Carbon, 2015, 93: 681-692.
[23] Evrim C, Lei Liu, Heechul C. Protein fouling behavior of carbon nanotube/polyethersulfonecomposite membranes during water filtration[J]. Water Research, 2011, 45: 5287-5294.
[24] Alberto T, Chad DV, Menachem E. Covalent Binding of Single-Walled Carbon Nanotubes to Polyamide Membranes for Antimicrobial Surface Properties [J]. ACS Applied Materials & Interfaces, 2011, 3: 2869-2877.
[25] PengFubing, PanFusheng, Sun H, et al. Novel nanocompositepervaporation membranes composed of poly(vinyl alcohol) and chitosan-wrapped carbon nanotube [J]. Journal of Membrane Science, 2007, 300: 13-19.
[26]Goh P S, Ng B C, Ismail A F, et al. Surfactant dispersed multi-walled carbon nanotube/polyetherimidenanocomposite membrane [J]. Solid State Sciences, 2010, 12:2155-2162.
[27] Noriaki S, Tamon N,Hajime T, et al. Fabrication of carbon nanotube film directly grown on conductive stainlesssteel film and application to dielectrophoretic nanoparticle capture [J]. Journal of Applied Physics, 2014, 115: 154302-154302-6.
[28] ZhaoYang,ZhongZhaoxiang, ZeX L, et al.A multifunctional multi-walled carbon nanotubes/ceramic membrane composite ?lter for airpuri?cation [J].RSC Advances, 2015, 5: 91951-91959.
[29] MiWanliang, Lin Y S, LiYongdan. Vertically aligned carbon nanotube membranes on macroporousalumina supports [J]. Journal of Membrane Science, 2007, 304: 1-7.
[30] Vermisoglou E C, Pilatos G, Romanos G E, et al. Synthesis andcharacterisation of carbon nanotube modi?ed anodised alumina membranes [J]. Microporous and Mesoporous Materials, 2008, 10: 25-36.
[31] WangJing, LangWanzhong, XuHaipeng, et al. Improved poly(vinyl butyral) hollow ?ber membranes by embedding multi-walled carbon nanotube for the ultra?ltrations of bovine serum albumin and humic acid [J]. Chemical Engineering Journal, 2015, 260: 90-98. 
[32]Rahimpour A, Mohsen J, Khalili S, et al. Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane [J]. Desalination 286 (2012) 99-107.
[33] Kima S, Fornasiero F, Park H G, et al. Fabrication of ?exible, aligned carbon nanotube/polymer composite membranes by in-situ polymerization [J]. Journal of Membrane Science, 2014, 460: 91-98.
[34] ChanWaifong, ChenHangyan, Anil S, et al. Zwitterion Functionalized Carbon Nanotube/Polyamide Nanocomposite Membranes for Water Desalination [J]. ACS Nano, 2013, 7: 5308-5319.
[35] XuGuorong, WangShenghui, ZhaoHeli, et al. Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes [J]. Journal of Membrane Science, 2015, 493: 428-443. 
[36] 李静, 张云怀, 张怀. 碳纳米管的自组装研究进展 [J]. 材料导报, 2007, S7: 131-133.
[37] LiuLei, Moon S, Hosik P, et al. Efficacy of CNT-bound polyelectrolyte membraneby spray-assisted layer-by-layer (LbL) technique on water puri?cation [J]. RSC Advances, 2014, 4:32858-32865.
[38] Gallagher M J, Huang H, Schwab K J, et al. Generating backwashable carbon nanotube mats on the inner surfaceof polymeric hollow ?ber membranes[J]. Journal of Membrane Science, 2013, 446: 59-67.
[39] FanXinfei, ZhaoHuimin, LiuYanming, et al. Enhanced Permeability, Selectivity, and Antifouling Ability of CNTs/Al2O3 Membrane under Electrochemical Assistance [J]. Environmental Science & Technology, 2015, 49: 2293-2300.
[40]Gaurav S A, David G, Kristofer M, et al. Modi?cation of low pressure membranes with carbonnanotube layers for fouling control [J]. Water Research, 2012, 46: 5645-5654.
[41] WangYifei, ZhuJiaxin, HuangHaiou, et al. Carbon nanotube composite membranes for micro?ltrationof pharmaceuticals and personal care products: Capabilitiesand potential mechanisms [J]. Journal of Membrane Science, 2015, 479: 165-174.
[42] Robeson L M. Correlation of Separation Factor versus Permeability for Polymeric Membranes [J]. Journal of Membrane Science, 1991, 62: 165-185.
[43] Ismail A F,Goh P S, Sanip S M, et al. Transport and separation properties of carbon nanotube-mixed matrix membrane [J]. Separation and Puri?cation Technology, 2009, 70: 12-26. 
[44] Goh P S, Ismail A F, Ng B C. Carbon nanotubes for desalination: Performance evaluation and current hurdles [J]. Desalination, 2013, 308: 2-14. 
[45] Maryam A T, YaserS, Toraj M, et al. Salty water desalination using carbon nanotubes membrane [J]. Chemical Engineering Journal, 2011, 168: 1064-1072.
[46] Son M, Choi H, LiuLei, et al. Ef?cacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-?lm composite membrane for desalination [J]. Chemical Engineering Journal, 2015, 266: 376-384.
[47] WangLi, SongXiangju, WangTao, et al. Fabrication and characterization of polyethersulfone /carbon nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) for nano?ltration application [J]. Applied Surface Science, 2015, 330: 118-125.
[48] ZhuYuzhang, WangDong, JiangLei, et al. Recent progress in developing advanced membranes for emulsi?ed oil/water separation [J]. NPG Asia Materials, 2014, 6: e101.
[49] ChenXinwei, HongLiang, XuYanfang, et al. Ceramic Pore Channels with Inducted Carbon Nanotubes for Removing Oil from Water [J]. ACS Applied Materials & Interfaces, 2012, 4: 1909-1918.
[50] Selby M, Kapil M,Meyyappan M, et al. A carbon nanotube-infused polysulfonemembrane with polyvinyl alcohol layer for treating oil-containing waste water [J]. Scientific Reports, 2013, 3: 1509.
[51] GuJincui, XiaoPeng, ChenJing, et al. Robust preparation of superhydrophobic polymer/ carbon nanotube hybrid membranes for highly elective removal of oils and separation of water- in-oil emulsions [J]. Journal of Materials Chemistry A, 2014, 2: 15268-15272.
[52]ZhuLi, ChenMingliang,DongYingchao, et al. A low-cost mullite-titaniacomposite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion, Water Research, 2016, 90: 277-285.
[53]ZhuLi, DongYingchao. Fabrication ofmullite-CNTs and mullite-zeolite composite membranes for improved performance in removal of high-temperature emulsiedoil droplets and Fe3+(preparing to submittedto Environmental Science & Technology).
[54] FuFenglian, WangQi. Removal of heavy metal ions from wastewaters: A review [J]. Journal of Environmental Management, 2011, 92: 407-418.
[55] Hamed P, Steven B, XiaYongde, et al. A highly ef?cient and versatile carbon nanotube/ceramic composite ?lter [J]. Carbon, 2013, 54: 215-223. 
[56] Maryam A T, Toraj M. Synthesis and characterization of ceramic/carbon nanotubes composite adsorptive membrane for copper ion removal from water [J]. Korean Journal Chemical Engineering, 2015, 32: 292-298.
[57] Salehi E, Madaeni S S,Rajabi L, et al. Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes: Combined effect of polyethylene glycol and aminated multi-walled carbon nanotubes[J]. Chemical Engineering Journal, 2013, 215: 791-801.
[58]郭建宁, 张治, 田瑞之, 等. 膜过滤对饮用水中药品和个人护理品去除研究进展[J].膜科学与技术, 2016, 36:122-127.
[59] ZhaoHuanxin, LiHoufen, YuHongtao, et al. CNTs–TiO2/Al2O3 composite membrane with a photocatalytic function:Fabrication and energetic performance in water treatment [J]. Separation and Puri?cation Technology, 2013, 116: 360-365. 
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号