聚酰胺反渗透复合膜改性技术研究进展
作者:潘春佑,徐国荣,赵河立
单位: 国家海洋局天津海水淡化与综合利用研究所,天津,300192
关键词: 海水淡化;反渗透膜改性;聚酰胺;复合膜
DOI号:
分类号: P747
出版年,卷(期):页码: 2016,36(6):133-138

摘要:
 海水淡化是目前应对全球淡水资源危机的最有效的方法,反渗透膜法因为分离效率高、低能耗和操作简便的特点已经逐渐成为海水淡化的主流技术。聚酰胺反渗透复合膜由于其优良的分离性能成为目前膜法海水淡化的主流应用膜,但是膜通量和盐离子截留率之间互相限制的关系、膜表面污染和氯氧化是限制其应用的三个主要方面,因此多种改性技术用来对其进行改性,以提高其通量和盐离子截留率、表面抗污染性能和耐氯性能。聚酰胺反渗透复合膜三层独立结构的特点为其改性提供了良好的平台,表面聚酰胺活性层、聚砜亚层和无纺布支撑层可以分开进行调节,从而达到复合膜结构和分离性能改性的目的。本文结合近年来围绕聚酰胺反渗透复合膜改性技术的研究进展进行了论述,重点围绕聚酰胺活性层表面改性和无机纳米材料掺杂、聚砜亚层的改性三个方面展开讨论,并对未来改性技术进行了展望。
 Seawater desalination is the most effective method to meet the global potable water crisis. Reverse osmosis (RO) desalination has overwhelmingly dominated this area due to their high efficiency, low energy consumption, and easy operation. Polyamide thin film composite (PA-TFC) membranes are the mainly used reverse osmosis membranes due to their excellent separating properties. However, PA-TFC RO membranes are seriously limited by three problems of trade-off between permeations and salt rejections, membrane fouling and chlorination. Therefore, various tailoring methods have been applied to increase the permeations, salt rejections, antifouling properties, and chlorination resistance of PA-TFC RO membranes. The unique structures characteristics of PA-TFC RO membranes provide well platform for the tailoring because the surface active layer, sublayer and non-woven layer are independent and can be tailored individually. This paper gives a comment combined with the research development of tailoring technologies on the PA-TFC RO membranes. And finally, the prospective was proposed.

基金项目:
基金项目:2015年中央级公益性科研院所基本科研业务费专项资金项目(K-JBYWF-2015-G01 ), 2015年中央级公益性科研院所基本科研业务费专项资金项目(K-JBYWF-2015- T02 )。

作者简介:
作者简介:潘春佑,男(1990-),汉,学士,国家海洋局天津海水淡化与综合利用研究所,助理工程师,研究方向为反渗透海水淡化。E-mail:418309446@qq.com

参考文献:
 [1] Shannon M, Bohn P, Elimelech M, etal. Science and technology for water purification in the coming decades[J]. Nature, 2008(452): 301-310.
[2] Xu G, Wang J, Li C. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: Surface modifications and nanoparticles incorporations[J]. Desalination, 2013(328):83-100.
[3] Albo J, Hagiwara H, Yanagishita H, etal. Structural characterization of thin-film polyamide reverse osmosis membranes[J]. Industrial & Engineering Chemistry Research, 2014(53):1442-1451.
[4] Kong C, Shintani T, Tsuru T. “Pre-seeding”-assisted synthesis of a high performance polyamide-zeolite nanocomposite membrane for water purification[J]. New J. Chem, 2010(34):2101-2104.
[5] Kim S, Oh B, Yu H, etal. Foulant characterization and distribution in spiral wound reverse osmosis membranes from different pressure vessels[J]. Desalination, 2015(370):44-52.
[6] Gutman J, Herzberg M, Walker S. Biofouling of reverse osmosis membranes: Positively contributing factors of sphingomonas[J]. Environmental Science & Technology, 2014(48):13941-13950.
[7] Do V, Tang C, Reinhard M, etal. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite[J]. Environmental Science & Technology, 2012(46):852-859.
[8] Tiraferri A, Elimelech M. Direct quantification of negatively charged functional groups on membrane surfaces[J]. Journal of Membrane Science, 2012(389):499-508.
[9] Rana H, Saha N, Jewrajka S, etal. Low fouling and improved chlorine resistant thin film composite reverse osmosis membranes by cerium(IV)/polyvinyl alcohol mediated surface modification[J]. Desalination, 2015(357):93-103.
[10] Wang C, Such G, Widjaya A, etal. Click poly (ethylene glycol) multilayers on RO membranes: Fouling reduction and membrane characterization[J]. Journal of Membrane Science, 2012(409):9-15.
[11] Blok A, Chhasatia R, Dilag J, etal. Surface initiated polydopamine grafted poly([2-(methacryoyloxy)ethyl]trimethylammonium chloride) coatings to produce reverse osmosis desalination membranes with anti-biofouling properties[J]. Journal of Membrane Science, 2014(468):216-223.
[12] Karkhanechi H, Takagi R, Matsuyama H. Biofouling resistance of reverse osmosis membrane modified with polydopamine[J]. Desalination, 2014(336):89-96.
[13] Zhang Z, Wang Z, Wang J, etal. Enhancing chlorine resistances and anti-biofouling properties of commercial aromatic polyamide reverse osmosis membranes by grafting 3-allyl-5, 5-dimethylhydantoin and N, N′-Methylenebis (acrylamide)[J]. Desalination, 2013(309):187-196.
[14] Mansourpanah Y, Habili E. Preparation and modification of thin film PA membranes with improved antifouling property using acrylic acid and UV irradiation[J]. Journal of Membrane Science, 2013(430):158-166.
[15] Wu J, Wang Z, Wang Y, etal. Polyvinylamine-grafted polyamide reverse osmosis membrane with improved antifouling property[J]. Journal of Membrane Science, 2015, in press.
[16] Choi H, Jung Y, Han S, etal. Surface modification of SWRO membranes using hydroxyl poly(oxyethylene) methacrylate and zwitterionic carboxylated polyethyleneimine[J]. Journal of Membrane Science, 2015(486):97-105.
[17] Mi Y, Zhao Q, Ji Y, etal. A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance[J]. Journal of Membrane Science, 2015(490):311-320.
[18] Yang R, Jang H, Stocker R, etal. Synergistic Prevention of Biofouling in Seawater Desalination by Zwitterionic Surfaces and Low-Level Chlorination[J]. Advanced Materials, 2014(26):1711-1718
[19] Kwon Y, Hong S, Choi H, etal. Surface modification of a polyamide reverse osmosis membrane for chlorine resistance improvement[J]. Journal of Membrane Science, 2012(415):192-198.
[20] Borges J, Mano J. Molecular interactions driving the layer-by-layer assembly of multilayers[J]. Chemical Reviews, 2014(114):8883-8942.
[21] Ishigami T, Amano K, Fujii A, Ohmukai Y, Kamio E, Maruyama T, Matsuyama H, Fouling reduction of reverse osmosis membrane by surface modification via layer-by-layer assembly[J]. Separation and Purification Technologies, 2012(99):1-7.
[22] Chen L, Aubin H, Wong M, Heok E, Ober C, Improvded antifouling properties of polymer membranes using a “layer-by-layer” mediated method[J]. Journal of Material Chemistry B, 2013(1):5651-5658.
[23] Chan E, Mulhearn D, Huang Y, Lee J, Lee D, Stafford C, Tailoring the permselectivity of water desalination membranes via nanoparticle assembly[J]. Langmuir, 2014(30):611-616.
[24] Joshi R, Carbone P, Wang F, etal. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014(343):752-754.
[25] Holt J, Park H, Wang Y, etal. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006(312):1034-1037.
[26] Choi W, Choi J, Bang J, etal. Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications[J]. ACS Applied Materials & Interfaces, 2013(5):12510-12519.
[27] Tiraferri A, Vecitis C, Elimelech M. Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties[J]. ACS Applied Materials & Interfaces, 2011(3):2869-2877.
[28] Perreault F, Tousley M, Elimelech M. Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets[J]. Environmental Science & Technology Letters, 2014(1):71-76
[29] Hegab H, Wimalasiri Y, GinicMarkovic M, etal. Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan[J]. Desalination, 2015(365):99-107.
[30] Li D, Wang H. Recent developments in reverse osmosis desalination membranes[J]. Journal of Materials Chemistry, 2010(20):4551-4566.
[31] Jeong B, Hoek E, Yan Y, etal. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes[J]. Journal of Membrane Science, 2007(294):1-7.
[32] Fathizadeh M, Aroujalian A, Raisi A. Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process[J]. Journal of Membrane Science, 2011(375):88-95.
[33] Dong H, Zhao L, Zhang L, etal. High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination[J]. Journal of Membrane Science, 2015(476):373-383.
[34] Saleh T, Gupta V. Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance[J]. Separation and Purification Technology, 2012(89):245-251.
[35] Kwak S, Kim S, Kim S. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane[J]. Environmental science & technology, 2001(35):2388-2394.
[36] Sabir A, Islam A, Shafiq M, etal. Novel polymer matrix composite membrane doped with fumed silica particles for reverse osmosis desalination[J]. Desalination, 2015(368):159-170.
[37] Bao M, Zhu G, Wang L, etal. Preparation of monodispersed spherical mesoporous nanosilica–polyamide thin film composite reverse osmosis membranes via interfacial polymerization[J]. Desalination, 2013(309):261-266.
[38] Inukai S, CruzSilva R, OrtizMedina J, etal. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube•polyamide nanocomposite[J]. Scientific Reports, 2015(5):13562
[39] Kim H, Lim M, Jung K, etal. High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides[J]. Journal of Materials Chemistry A, 2015(3):6798-6809.
[40] Chan W, Chen H, Surapathi A, etal. Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination[J]. ACS Nano, 2013(7):5308-5319.
[41] Safarpour M, Khataee A, Vatanpour V. Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance[J]. Journal of Membrane Science, 2015(489):43-54.
[42] Chae H, Lee J, Lee C, etal. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance[J]. Journal of Membrane Science, 2015(483):128-135.
[43] Xia S, Yao L, Zhao Y, etal. Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal[J]. Chemical Engineering Journal, 2015(280):720-727.
[44] Mollahosseini A, Rahimpour A. Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate[J]. Journal of Industrial and Engineering Chemistry, 2014(20):1261-1268.
[45] Deng B. Effects of Polysulfone (PSf) Support layer on the performance of thin-film composite (TFC) membranes[J]. Journal of Chemical Processing Engineering, 2014(1):1-8.
[46] Fathizadeh M, Aroujalian A, Raisi A. Preparation and characterization of thin film composite reverses osmosis membranes with wet and dry support layer[J]. Desalination and Water Treatment, 2015(56):2284-2295.
[47] Susanto H, Ulbricht M, Characteristics. performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives[J]. Journal of Membrane Science, 2009(327):125-135.
[48] Idris A, Zain N, Noordin M, etal. characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives[J]. Desalination, 2007(207):324-339.
[49] Fathizadeh M, Aroujalian A, Raisi A. Effect of lag time in interfacial polymerization on polyamide composite membrane with different hydrophilic sub layers[J]. Desalination, 2012(284):32-41.
[50] Pendergast M, Ghosh A, Hoek E. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes[J]. Desalination, 2013(308):180-185.
[51] Son M, Choi H, Liu L, etal. Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination[J]. Chemical Engineering Journal, 2015(266):376-384.
[52] Lee J, Jang J, Chae H, etal. A facile route to enhance the water flux of thin-film composite reverse osmosis membrane: Incorporating thickness-controlled graphene oxide in highly porous support layer[J]. Journal of Materials Chemistry A, 2015(3)22053-22060.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号