静电纺纳米亚微米纤维膜对染料的过滤性能研究
作者:刘雷艮,王育玲,陈建广
单位: 苏州经贸职业技术学院,江苏 苏州 215008
关键词: 静电纺丝;PSF亚微米纤维膜;PA6纳米纤维膜;过滤性能;染料
DOI号:
分类号: X791
出版年,卷(期):页码: 2017,37(1):100-106

摘要:
 为了获得能够高效处理印染废水中有毒染料的分离膜,采用静电纺丝技术制备了具有亚微米级直径的聚砜(PSF)纤维膜和纳米级直径的尼龙6(PA6)纤维膜,通过SEM、孔径分析测试仪、接触角测量仪、电子强力仪和紫外可见光分光光度仪测试并分析了此两种纤维膜的孔隙结构、润湿性、力学性能及对分散蓝2BLN悬浮液和弱酸性蓝N-RL水溶液的过滤性能。结果表明,静电纺PA6纤维膜和PSF纤维膜的孔隙结构都属于微滤膜范畴,孔隙率均高于80%,其中PSF纤维膜对水具有较强的抗润性,而PA6纤维膜具有优良的润湿性,并且其力学性能明显优于PSF纤维膜。在0.1MPa死端恒压过滤条件下,连续过滤1 h后,两类纤维膜对分散蓝2BLN的截留率均达到94%以上,对弱酸性蓝N-RL的截留率均小于36%,但是均具有较高的过滤通量并且逐渐趋于一致。
 The submicro-diameter polysulfone (PSF) fibrous membrane and nano-diameter nylon 6 (PA6) fibrous membrane were prepared by electrospinning in order to efficiently separating toxic synthetic dyes from water. The pore structure, wettability, mechanical property and filtration properties for disperse blue 2BLN and weak acid blue N-RL of these two type membranes were studied by SEM, pore-diameter testing meter, contact angle measurement, tensile strength tester and ultraviolet spectrophotometer. The results showed that the pore diameter of these membranes were all belong to microfiltration membrane’s, and both of their porosity were all above 80 percentage. It also showed that the electrospun PSF fibrous membrane has poor wettability, but the electrospun PA6 fibrous membrane has excellent wettability. When both of them were filtered under constant 0.1 MPa pressure for 1 h, their rejection rate for disperse blue 2BLN were all bove 94 percentage, but their rejection rate for weak acid blue N-RL was lower than 36 percentage, while their filtering flux were all higher than traditional commerce microfiltration membrane and were all gradually tending to consistent with time. 

基金项目:
苏州市科技计划应用基础专项(SYG201523)

作者简介:
第一作者简介:刘雷艮(1979—),女,讲师,博士,E-mail: liuleiyin@aliyun.com.

参考文献:
 [1] Buckley C A. Membrane technology for the treatment of dye-house effluents[J]. Water Science Technology, 1992, 10:203-209.
[2] Porter J J. Recovery of polyvinyl alcohol and hot water from the textile wastewater using thermally stable membranes[J]. Membranes Science, 1998,151:45-53.
[3] Sanchuan Y, Conjie G, Hexiang S, et al. Nanofiltration used for desalination and concentration in dye production [J]. 2001,140:97-100.
[4] Gopal R, Kaur S, Chao Y F, et al. Electrospun nanofibrous filtration membrane[J]. Membrane 
Science, 2006,281:581-586.
[5] Gopal R, Kaur S, Chao Y F, et al. Electrospun nanofibrous polysulfone membranes as 
pre-filters:Particulate removal[J]. Membrane Science, 2007,289:210-219.
[6] Aussawasathien D, Teerawattananon C, Vongachariya A. Separation of micron to sub-micron 
particles from water: Electrospun nylon-6 nanofibrous membranes as pre-filters[J].Membrane 
Science, 2008,315:11-19.
[7] Homaeigohar S SH, Buhr K, Ebert K. Polyethersulfone electrospun nanofibrous composite 
membrane for liquid filtration[J]. Membrane Science, 2010, 365:68-77.
[8] Kaur S, Ma Z, Gopal R, et al. Plasma-induced graft copolymerization of poly (methacrylic acid) on electrospun poly(vi-nylidene fluoride) nanofiber membrane[J]. Langmuir, 2007, 23:13085-13092.
[9] Pai C L, Boyce M C, Rutledge G C. On the important of fiber curvature to the elastic moduli of electrospun nonwoven fiber meshes[J]. Polymer, 2011,52:6126-6133.
[10] Croisier  F, Duwez A S, Jéróme C, et al. Mechanical testing of electrospun PCL fibers[J]. Acta Biomaterialia, 2012,8:218-224. 
[11] Sen R, Zhao B, Perea D, et al. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning[J]. Nano Letters, 2004,4:459-464.
[12] Kim G M, Lach C H, Michler P, et al. Relationships between phase morphology and deformationano mechanism in polymer nanocomposite nanofibers prepared by an electrospinning process[J]. Nanotechnology, 2006,17:963-972.
[13] Mack J J, Viculis L M, Ali A, et al. Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers[J]. Advanced Material, 2005,17(1):77-80.
[14] Papkov D, Zou Y, Andalib M N, et al. Simultaneously strong and tough ultrafine continuous nanofibers[J]. ACS Nano, 2013,7:3324-3331.
[15] Ma Z W, Kotaki M, Ramarkrishna S. Surface modified nonwoven polysulfone(PSU) fiber mesh by electrospinning: a novel affinity membrane[J]. Membrane Science, 2006,272:179-187.
[16] Yoon K, Hsiao B S, Chu B. Formation of functional polyethersulfone electro-spun membrane for water purification by mixed solvent and oxidation process[J]. Polymer, 2009,50:2893-2899.
[17] Ma H, Burger C, Hsiao B S, et al. Ultra-fine cellulose nanofibers: new nano-scale materials for water purification[J]. Materials Chemistry, 2011,21:7507-7510.
[18] 黄博能, 王娇娜, 李从举. 可调制润湿性和力学性能的电纺纤维膜的制备与性能研究[J]. 高分子学报, 2012, 9:929-936.
[19] 许振良, 李鲜日, 周颖. 超滤-微滤膜过滤传质理论的研究进展[J]. 膜科学与技术, 2008, 28(4):1-8.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号