共价三嗪骨架分离膜的制备及有机溶剂渗透行为研究 |
作者:王泼,班宇杰,李砚硕,杨维慎 |
单位: 1.中国科学院大连化学物理研究所,催化基础国家重点实验室,大连,116023;2. 中国科学院大学,北京,100049 |
关键词: 共价三嗪骨架;渗透汽化;有机溶剂;溶胀 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2017,37(1):58-63 |
摘要: |
共价三嗪骨架(Covalent Triazine Frameworks, CTFs)材料是一类以共价键连接的多孔准晶型聚合物,在吸附、催化、气体储存和高纯分离领域具有潜在的应用价值。在本项研究中,以4,4’-联苯二甲腈为单体,采用溶胶-凝胶法制备CTF分离膜。经红外光谱(FTIR)和固体核磁(ssNMR)表征证实,所制备的膜具有CTFs材料的特征三嗪环结构。在此基础上,开展了不同的有机溶剂通过CTF分离膜的渗透行为研究,考察了溶剂的渗透汽化性能,以及溶剂对分离膜溶胀的作用规律。结果显示,CTF分离膜对于直链醇类的渗透率会随醇类碳数的增加而上升;而对于同分异构低碳醇的渗透率,则随支链增加而降低。同时,正辛醇-水分配系数越大的组分,其渗透率往往越大。CTF分离膜对于有机溶剂分子的渗透规律预示了它在有机溶剂分离领域的应用前景。 |
Covalent Triazine Frameworks (CTFs) are a new type of porous semi-crystalline polymers, which are constructed with organic building units via strong covalent bonds, displaying great potential applications in adsorption, catalysis, gas storage and high efficient separation. In this research, CTF Membranes were prepared from 4,4’-biphenyldicarbonitrile via a sol-gel route. The successful formation of triazine rings in the as-synthesized CTF membranes were proved by Fourier Transform infrared spectroscopy (FTIR) and Solid-state 13C Nuclear Magnetic Resonance (ssNMR). Based on the above results, the permeation behavior of different organic solvent through the CTF membranes were systematically investigated. The permeability of mono alcohols through the CTF membranes increases with the carbon numbers of the alcohols and decreases with the increasing numbers of branch chain of the alcohols. In addition, it was found that the permeability of organic solvent increases with its octanol-water partition coefficient (Kow). This work demonstrates the potential applications of CTF membranes for organic solvent separation. |
基金项目: |
国家自然科学基金(21361130018, 21276249) |
作者简介: |
第一作者简介:王泼(1990-),男,湖北黄冈人,硕士生,从事微孔聚合物分离膜研究. *通讯作者 E-mail: leeys@dicp.ac.cn |
参考文献: |
[1] Furukawa H, Yaghi OM. Storage of Hydrogen, Methane, Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications [J]. J Am Chem Soc, 2009, 131, 8875−8883. [2] Garberoglio G, Vallauri R. Adsorption and diffusion of hydrogen and methane in 2D covalent organic frameworks [J]. Microporous and Mesoporous Materials, 2008, 116, 540-547. [3] Peng Yongwu, Hu Zhigang, Gao Yongjun, et al. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion [J]. Chemsuschem, 2015, 8, 3208-3212. [4] Wan S, Guo J, Kim J, et al. A Belt-Shaped Blue Luminescent, Semiconducting Covalent Organic Framework [J]. Angew Chem Int Ed, 2008, 47, 8826−8830. [5] Cote AP, Benin AI, Ockwig NW, et al. Porous, Crystalline, Covalent Organic Frameworks [J]. Science, 2005,310, 1166-1170. [6] Pierre Kuhn, Markus Antonietti, Arne Thomas. Porous. Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis [J]. Angew Chem. Int. Ed, 2008, 47, 3450−3453. [7] Pierre Kuhn, Aurelien Forget, Dangsheng Su, et al. From Microporous Regular Frameworks to Mesoporous Materials with Ultrahigh Surface Area: Dynamic Reorganization of Porous Polymer Networks [J]. J Am Chem Soc 2008, 130, 13333–13337. [8] Zhang Wang, Li Cun, Yuan Yupeng, et al. Highly energy- and time-efficient synthesis of porous triazine-based framework: microwave-enhanced ionothermal polymerization and hydrogen uptake [J]. J Mater Chem, 2010, 20, 6413–6415. [9] Ren Shijie, Bojdys Michael J, Dawson Robert, et al. Porous, Fluorescent, Covalent Triazine-Based Frameworks Via Room-Temperature and Microwave-Assisted Synthesis [J]. Advanced Materials, 2012, 24, 2357-2361. [10] Zhu Xiang, Tian Chengcheng, Shannon M. Mahurin, et al. A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation [J]. J Am Chem Soc, 2012, 134, 10478−10484. [11] Tang Yupan, Wang Huan, Chung Taishung. Towards High Water Permeability in Triazine-Framework-Based Microporous Membranes for Dehydration of Ethanol [J]. Chemsuschem, 2015, 8, 138-147. [12] Roy D. Raharjoa, Benny D. Freemana, Donald R. Paul, et al. Pure and mixed gas CH4 and n-C4H10 permeability and diffusivity in poly(dimethylsiloxane) [J]. J. Membr. Sci. 2007, 306, 75–92. [13] 王保国, 山口猛央, 中尾真一. 极性溶剂在高分子膜内溶解扩散行为预测[J]. 膜科学与技术,2003, 23 (2), 1-6. [14] 刘威,纪树兰, 高静,张伟,秦振平. PDMS-b-PPO共聚物膜的组分比对其微观结构及传质特性的影响[J]. 膜科学与技术,2013, 33(6),32-37. [15] 高保娇. 溶解度参数及其应用[J]. 山西化工,1998, 2, 18-20. [16] Van Leeuwen ME. Derivation of Stockmayer potential parameters for polar fluids [J]. Fluid Phase Equilibria, 1994, 99, 1–18. [17] Lide D R. Handbook of Chemistry and Physics [M]. CRC Press LLC, 2002, 9-41. [18] Paul J. Flory1 and John Rehner Jr. Statistical Mechanics of Cross‐Linked Polymer Networks II. Swelling [J]. J Chem Phys, 1943, 11, 521. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号