离子交换膜传质过程中电化学特性的研究
作者:张文娟,马军,王执伟,刘惠玲
单位: 哈尔滨工业大学 市政环境工程学院 城市水资源与环境国家重点实验室,黑龙江 哈尔滨 150090
关键词: 离子交换膜;电阻;直流法;电化学阻抗谱;双电层;扩散边界层
DOI号:
分类号: TQ15
出版年,卷(期):页码: 2017,37(1):44-50

摘要:
 电化学阻抗谱和直流方法均可用来评价离子交换膜传质过程中的电化学性质,而前者可用于分析膜本身、双电层和扩散边界层的电阻值。本文通过比较两个等效电路的拟合效果及其物理化学意义,选择了最优的等效电路来定量分析离子交换膜体系的各个分层,并考察不同流速和浓度下两种膜的电化学性质变化。研究发现:直流方法测定的电阻值等于电化学阻抗谱测定的各个分层的电阻值之和;随着流速的增大,膜本身和双电层的电阻变化较小,而扩散边界层的电阻明显降低;随着浓度的增大,传质体系的电阻均显著降低;阳离子交换膜和阴离子交换膜具有不同的电化学传质特性。研究结果对于优化离子交换膜的电化学评价技术及离子交换膜的制备和应用具有重要意义。
 Electrochemical impedance spectroscopy (EIS) and direct current method (DC) can be used to investigate the electrochemical properties in the mass transport of ion exchange membrane (IEM). The resistance of membrane, electrical double layer (EDL) and diffusion boundary layer (DBL) can be analyzed separately by EIS. With the comparison of two equivalent circuits and in terms of their physical and electrochemical interpretations, a better equivalent circuit was selected, and the effect of flow rate on electrochemical properties of two membranes was investigated It is found that the resistance determined from DC was equal to the sum of each sublayer’s resistance in IEM systems from EIS; when the flow rate increased, the resistance of membrane and EDL did not change significantly, while the DBL resistance decreased obviously; with the increase of concentration, the resistance of mass transport system decreased significantly; the transport properties in cation exchange membrane and anion exchange membrane were different. Research results are of major importance for developments of characterization techniques on membrane transport properties and applications of IEMs.

基金项目:
尖晶石铁氧体催化过硫酸盐分解水中有机物效能与机理,国家自然科学基金(51378141);水的深度处理与资源化利用重点实验室课题研究,黑龙江省科学技术厅(PS13H05)

作者简介:
第一作者简介:张文娟(1986-),女,山东泰安人,博士,主要从事方向为膜材料与膜过程及电化学性质的研究,E-mail: wenjuanvivian@126.com. *通讯作者,E-mail: majun@hit.edu.cn

参考文献:
 [1] J W Post, J Veerman, H V M Hamelers, et al. Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis[J]. J Membr Sci, 2007, 288: 218-230.
[2] J W Post, C H Goeting, J Valk, et al. Towards implementation of reverse electrodialysis for power generation from salinity gradients[J]. Desalin Water Treat, 2010, 16: 182-193.
[3] C -P Liu, C -A Dai, C -Y Chao, et al. Novel proton exchange membrane based on crosslinked poly(vinyl alcohol) for direct methanol fuel cells[J]. J Power Sources, 2014,249: 285-298.
[4] 徐铜文. 离子交换膜的重大国家需求和创新研究[J]. 膜科学与技术, 2008, 28: 1-10.
[5] 陈荣,李昂,房世超, 等. 自交联型季铵化聚醚砜阴离子交换膜的制备与性能[J]. 高分子学报 2016, 436-442.
[6] T Sata. Ion exchange membranes: preparation, characterization, modification and application[M]//London: Royal Society of chemistry, 2004.
[7] M Mulder. Basic principles of membrane technology[M]// Netherlands: Springer Science & Business Media, 1996.
[8] J S Park, J H Choi, J J Woo, et al. An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems[J]. J Colloid Interf Sci, 2006, 300: 655-662.
[9] S Sang, H Huang, Q Wu, An investigation on ion transfer resistance of cation exchange membrane/solution interface[J]. Colloid Surf A Physicochem Eng Asp, 2008, 315: 98-102.
[10] P D?ugo??cki, B Anet, S J Metz, et al. Transport limitations in ion exchange membranes at low salt concentrations[J]. J Membr Sci, 2010, 346: 163-171.
[11] 王芸,汤滢,谢长生,等. 电化学阻抗谱在材料研究中的应用[J]. 材料导报, 2011, 25: 5-9.
[12] 范永生,陈晓,王保国. 基于交流阻抗法的离子交换膜电阻研究[J]. 膜科学与技术 31 (2011) 14-18.
[13] W Zhang, J Ma, P Wang, et al. Investigations on the interfacial capacitance and the diffusion boundary layer thickness of ion exchange membrane using electrochemical impedance spectroscopy[J]. J Membr Sci, 2016, 502: 37-47.
[14] H G L Coster, T C Chilcott, Adelle C F Coster. Impedance spectroscopy of interfaces, membranes and ultrastructures[J]. Bioelectroch Bioener, 1996, 40: 79-98.
[15] 张东方,潘牧,罗志平,等. 四电极质子补偿法测量质子交换膜的电导率[J]. 电池工业, 2003, 8: 11-14.
[16] 曹楚南, 张鉴清. 电化学阻抗谱导论[M]//北京:科学出版社, 2002, 6: 84-107.
[17] P Córdoba-Torres, T J Mesquita, O Devos, et al. On the intrinsic coupling between constant-phase element parameters α and Q in electrochemical impedance spectroscopy[J]. Electrochim Acta, 2012, 72: 172-178.
[18] P Córdoba-Torres, T J Mesquita, R P Nogueira. Influence of geometry-induced current and potential distributions on the characterization of constant-phase element behavior[J]. Electrochim Acta, 2013, 87: 676-685.
[19] J Tymoczko, W Schuhmann, A S Bandarenka. The constant phase element reveals 2D phase transitions in adsorbate layers at the electrode/electrolyte interfaces[J]. Electrochem Commun, 2013, 27: 42-45.
[20] M R Shoar Abouzari, F Berkemeier, G Schmitz, et al. On the physical interpretation of constant phase elements[J]. Solid State Ionics, 2009, 180: 922-927.
[21] Y Tanaka. Ion exchange membranes: fundamentals and applications[M]//Oxford: Elsevier, 2015.
[22] E Fontananova, W Zhang, I Nicotera, et al. Probing membrane and interface properties in concentrated electrolyte solutions[J]. J Membr Sci, 2014, 459: 177-189.
[23] S. Sang, K. Huang, X. Li, The influence of H2SO4 electrolyte concentration on proton transfer resistance of membrane/solution interface[J]. Eur Polym J, 2006, 42: 2894-2898.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号