APTES改性的SiO2/PAN杂化膜的制备及其超滤性能研究 |
作者:刘峤,李琳,王春雷,金鑫,徐瑞松,王同华 |
单位: (大连理工大学 化工学院 精细化工国家重点实验室 膜科学与技术研究开发中心,大连 116024) |
关键词: 聚丙烯腈;杂化膜;SiO2;APTES;原位合成 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2017,37(2):1-5 |
摘要: |
以聚丙烯腈(PAN)为基体,N,N-二甲基乙酰胺为溶剂,正硅酸乙酯(TEOS)为无机前体,3-氨丙基三乙氧基硅烷(APTES)为添加剂,原位合成了SiO2/PAN杂化膜。借助于扫描电镜、红外光谱、接触角和渗透性能试验等测试手段,研究了APTES对SiO2/PAN杂化膜的微观形貌、化学结构、亲水性及渗透性能的影响。结果表明,原位合成法制备SiO2/PAN杂化膜的过程中,APTES使 SiO2表面拥有一定量的-NH2官能团,提高了SiO2与PAN的相容性,使其在PAN基体中分散得更均匀,不但使膜具有更薄的皮层和尺寸更大的垂直指状孔结构,还进一步提高了膜表面的亲水性、水通量和抗污染性能,其中,APTES添加量为12%的(T/A12)/PAN膜的纯水接触角最小,纯水通量为260.43 L/m2•h,且对BSA的截留率保持在99%以上。 |
The SiO2/PAN hybrid membranes were fabricated in situ by the method of non-solvent induced phase separation (NIPS) with polyacrylonitrile (PAN) as the matrix, N,N-dimethylacetamide (DMAc) as the solvent, tetraethoxysilane (TEOS) as the inorganic precursor and 3-aminopropyltriethoxysilane (APTES) as the additive. The effects of APTES on the micromorphology, chemical structure, hydrophilic property and filtration performance of SiO2/PAN hybrid membranes were investigated by the SEM, FT-IR, contact angle measurement and ultrafiltration performance test. The results indicated that the –NH2 groups were grafted on the surface of SiO2 due to the modification of APTES, which promoted dispersion of SiO2 in the PAN matrix. Therefore, the hybrid membranes not only have a thinner surface layer and the vertical finger-like holes, but also improved the hydrophilic property and anti-fouling performance of the membranes. (T/A12)/PAN with APTES content of 12% exhibited the lowest contact angle and the pure water flux of 260.43 L/m2•h with the BSA rejection as high as 99%. |
基金项目: |
国家自然科学基金资助项目(21276035,21376037,21436009,21576035,21506020,21676044);中央高校基本科研业务费资助项目(DUT16RC(4)05),中国博士后科学基金资助项目(2014M561232) |
作者简介: |
作者简介:刘峤(1987-),男,安徽淮南,博士研究生,从事分离膜材料的研究及应用。E-mail:peakliu0525@163.com |
参考文献: |
[1] 闫海红,张国俊,纪树兰. 聚丙烯腈超滤基膜的水解改性 [J]. 膜科学与技术,2007,27(5):56-61. [2] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades [J]. Nature,2008,452: 301-310. [3] D. Rana, T. Matsuura, Surface Modification for Antifouling Membranes [J]. Chem Rev,2010,110:2448-2471. [4] A. Asatekin, S. Kang, M. Elimelech, A.M. Mayes, Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives [J]. J Membr Sci,2007, 298: 136-146. [5] Meltem Yanilmaz, Yao Lu, Jiadeng Zhu, Xiangwu Zhang, Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries [J]. Journal of Power Sources,2016, 313: 205-212. [6] J.-S. Gu, H.-Y. Yu, L, Huang, Chain-length dependence of the antifouling characteristics of the glycopolymer-modified polypropylene membrane in an SMBR [J]. J Membr Sci,2009,326:145-152. [7] 隋燕,高从堦. 超滤膜材料抗污染改性方法研究进展 [J]. 膜科学与技术,2011,31(5):100-106. [8] Minoru Iwata, Takeharu Adachi, Miwa Tomidokoro, Michiyoshi Ohta, Takaomi Kobayashi, Hybrid Sol-Gel Membranes of Polyacrylonitrile-Tetaethoxysilane Composites for Gas Permselectivity [J]. Journal of Applied Polymer Science,2003,88: 1752-1759. [9] Y. Jafarzadeh, R. Yegani, Analysis of fouling mechanisms in TiO2 embedded high density polyethylene membranes for collagen separation [J]. Chemical Engineering Research and Design,2015,93:684-695. [10] W. Chen, Y. Su, L. Zhang, Q. Shi, J. Peng, Z. Jiang, In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes [J]. J Membr Sci,2010,348:75-83. [11] Xin Li, Xiaofeng Fang, Ruizhi Pang, et al. Self-assembly of TiO2 nanoparticles around the pore of PES ultrafiltration membrane for mitigating organic fouling [J]. J Membr Sci,2014,467:226-235. [12] Feng Zhang, Wenbin Zhang, Yang Yu, et al. Sol-gel preparation of PAA-g-PVDF/TiO2 nanocomposite hollow fiber membranes with extremely high water flux and improved antifouling property [J]. J Membr Sci,2013,432:25-32. [13] Lishun Wu, Junfen Sun, Ziying Lv, Ying Chen. In-situ preparation of poly(ether imide)/amino functionalized silica mixed matrix membranes for application in enzyme separation [J]. Materials and Design,2016,92:610-620. [14] W. Chen, Y. Su, L. Zhang, Q. Shi, J. Peng, Z. Jiang, In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes [J]. J. Membr. Sci,2010,348:75-83. [15] L. Wu, J. Sun, Z. Lv, Y. Chen, In-situ preparation of poly(ether imide)/amino functionalized silica mixed matrix membranes for application in enzyme separation [J]. Materials and Design,2016,92:610-620. [16] Liyun Yu, Zhenliang Xu, Hongmei Shen, Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method [J]. J. Membr. Sci,2009,337:257-265. [17] A. Sotto, A. Boromand, R. Zhang. Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, morphology, and fouling resistance of PES-TiO2 membranes [J]. J. Colloid Interface Sci,2011,363:540-550. [18] X. Chen, S.S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications [J]. Chem Rev,2007,107:2891-2959. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号