离子交换膜扩散边界层厚度的测试方法比较
作者:张文娟, 马军 , 王执伟, 刘惠玲
单位: (哈尔滨工业大学 市政环境工程学院 城市水资源与环境国家重点实验室,黑龙江 哈尔滨 150090)
关键词: 离子交换膜;线性扫描伏安法;电化学阻抗谱;扩散边界层厚度
DOI号:
分类号: TQ15
出版年,卷(期):页码: 2017,37(2):12-18

摘要:
 电化学阻抗谱和线性扫描伏安法均可用来测定离子交换膜扩散边界层的厚度。本文比较了两种方法测定的扩散边界层厚度大小,并考察了不同流速和温度对阳离子交换膜和阴离子交换膜扩散边界层厚度的影响。研究发现:线性扫描伏安法的测试结果高于电化学阻抗谱法的结果,这与前者测试过程中施加电压过高使界面层发生破坏有关;随着流速的增大,电化学阻抗谱测定的扩散边界层厚度显著降低,而线性扫描伏安法的测定值基本不变,前者的测定值更接近实际值;阳离子交换膜和阴离子交换膜的扩散边界层厚度不同,且受温度的影响程度不同。研究结果对于优化离子交换膜的电化学评价技术具有重要意义。
 Electrochemical impedance spectroscopy (EIS) and Linear sweep voltammetry (LSV) can be used to measure the thickness of diffusion boundary layers (DBL) in ion exchange membranes. The DBL thickness from these two methods was compared and the effects of flow rate and temperature on the DBL thickness of two ion exchange membranes were investigated. It is found that the DBL thickness measured from LSV was higher than that from EIS, which was due to the higher voltage imposed to the membrane leading to the destruction of membrane interface; when the flow rate increased, the DBL thickness decreased for EIS measurements while did not change significantly for LSV measurements, which indicated that the data from EIS was close to the real value; the DBL thickness was different for anion exchange membrane and cation exchange membrane, and the effect of temperature on them was also different. Research results are of major importance for optimization of characterization techniques on membrane transport properties of ion exchange membranes.

基金项目:
尖晶石铁氧体催化过硫酸盐分解水中有机物效能与机理,国家自然科学基金(51378141);水的深度处理与资源化利用重点实验室课题研究,黑龙江省科学技术厅(PS13H05)

作者简介:
第一作者简介:张文娟(1986-),女,山东泰安人,博士,主要从事方向为膜材料与膜过程及电化学性质的研究,E-mail: wenjuanvivian@126.com. *通讯作者,E-mail: majun@hit.edu.cn

参考文献:
 [1] M. Sadrzadeh, T. Mohammadi. Sea water desalination using electrodialysis[J]. Desalination, 2008, 221: 440-447.
[2] H. Strathmann. Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264: 268-288.
[3] J.W. Post, J. Veerman, H.V.M. Hamelers, et al. Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis[J]. J Membr Sci, 2007, 288: 218-230.
[4] D.A. Vermaas, E. Guler, M. Saakes, et al. Theoretical power density from salinity gradients using reverse electrodialysis[J]. Energy Procedia, 2012, 20: 170-184.
[5] D.A. Vermaas, M. Saakes, K. Nijmeijer. Power generation using profiled membranes in reverse electrodialysis[J]. J Membr Sci, 2011, 385: 234-242.
[6] M.Y. Kariduraganavar, R.K. Nagarale, A.A. Kittur, et al. Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications[J]. Desalination, 2006, 197: 225-246.
[7] R.Q. Fu, T.W. Xu, W.H. Yang, et al. A new derivation and numerical analysis of current-voltage characteristics for an ion-exchange membrane under limiting current density[J]. Desalination, 2005, 173: 143-155.
[8] J.S. Park, J.H. Choi, J.J. Woo, et al. An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems[J]. J Colloid Interf Sci, 2006, 300: 655-662.
[9] N. Islam, N. Bulla, S. Islam. Electrical double layer at the peritoneal membrane/electrolyte interface[J]. J Membr Sci, 2006, 282: 89-95.
[10] S. Sang, H. Huang, Q. Wu. An investigation on ion transfer resistance of cation exchange membrane/solution interface[J]. Colloid Surf A Physicochem Eng Asp, 2008, 315: 98-102.
[11] E. Fontananova, W. Zhang, I. Nicotera, et al. Probing membrane and interface properties in concentrated electrolyte solutions[J]. J Membr Sci, 2014, 459: 177-189.
[12] P. D?ugo??cki, B. Anet, S.J. Metz, et al. Transport limitations in ion exchange membranes at low salt concentrations[J]. J Membr Sci, 2010, 346: 163-171.
[13] P. D?ugo??cki, P. Ogonowski, S.J. Metz, et al. On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport[J]. J Membr Sci, 2010, 349: 369-379.
[14] D.D. Macdonald. Reflections on the history of electrochemical impedance spectroscopy[J]. Electrochim Acta, 2006, 51: 1376-1388.
[15] Y. Xu, M. Wang, Z. Ma, et al. Electrochemical impedance spectroscopy analysis of sulfonated polyethersulfone nanofiltration membrane[J]. Desalination, 2011, 271: 29-33.
[16] T.C. Chilcott, H.G.L. Coster, E.P. George. A novel method for the characterisation of the double fixed charge (bipolar) membrane using impedance spectroscopy[J]. J Membr Sci, 1995, 108: 185-197.
[17] V.V. Nikonenko, A.E. Kozmai. Electrical equivalent circuit of an ion-exchange membrane system[J]. Electrochim Acta, 2011,56: 1262-1269.
[18] W. Zhang, J. Ma, P. Wang, et al. Investigations on the interfacial capacitance and the diffusion boundary layer thickness of ion exchange membrane using electrochemical impedance spectroscopy[J]. J Membr Sci, 2016, 502: 37-47.
[19] H.G.L. Coster, T.C. Chilcott, A.C.F. Coster. Impedance spectroscopy of interfaces, membranes and ultrastructures[J]. Bioelectroch Bioener, 1996, 40: 79-98.
[20] 张东方,潘牧,罗志平,等. 四电极质子补偿法测量质子交换膜的电导率[J]. 电池工业, 2003, 8: 11-14.
[21] S. Pawlowski, P. Sistat, J.G. Crespo, et al. Mass transfer in reverse electrodialysis: Flow entrance effects and diffusion boundary layer thickness[J]. J Membr Sci, 2014, 471: 72-83.
[22] N. Pismenskaia, P. Sistat, P. Huguet, et al. Chronopotentiometry applied to the study of ion transfer through anion exchange membranes[J]. J Membr Sci, 2004, 228: 65-76.
[23] J.-H. Choi, J.-S. Park, S.-H. Moon. Direct Measurement of Concentration Distribution within the Boundary Layer of an Ion-Exchange Membrane[J]. J Colloid Interf Sci, 2002, 251: 311-317.
[24] C. Amatore, S. Szunerits, L. Thouin, et al. The real meaning of Nernst's steady diffusion layer concept under non-forced hydrodynamic conditions. A simple model based on Levich's seminal view of convection[J]. J Electroanal Chem, 2001, 500: 62-70.
[25] V.A. Shaposhnik, V.I. Vasil’eva, O.V. Grigorchuk. Diffusion boundary layers during electrodialysis, Russian J of Electrochem, 2006, 42: 1202-1207.
[26] C. Larchet, S. Nouri, V. Nikonenko. Application of chronopotentiometry to study the diffusion layer thickness adjacent to an ion-exchange membrane under natural convection[J]. Desalination, 2006, 200: 146-148.
[27] C. Larchet, S. Nouri, B. Auclair, et al. Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection[J]. Adv Colloid Interface Sci, 2008, 139: 45-61.
[28] M. Ota, S. Izuo, K. Nishikawa, et al. Measurement of concentration boundary layer thickness development during lithium electrodeposition onto a lithium metal cathode in propylene carbonate[J] J Electroanal Chem, 2003, 559: 175-183.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号