抗生物污染反渗透膜的研究进展
作者:李银,张林
单位: 膜与水处理技术教育部工程中心,浙江大学化学工程与生物工程学院,杭州,310027
关键词: 反渗透膜;抗生物污染;改性方法;膜材料
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2018,38(2):111-118

摘要:
 生物污染是反渗透技术在海水淡化、污水处理等领域应用面临的重要问题之一。本文首先介绍了抗生物污染反渗透膜的重要性;其次根据抗生物污染作用机理将反渗透膜分为抗生物质吸附型和抑菌型,分别综述了这两类膜的制备方法和研究现状;简要概括了新型抗生物污染反渗透膜材料的研究进展;最后根据国内外的研究现状,对抗生物污染反渗透膜的开发进行了展望。
 Reverse osmosis membranes, which have a widely use in desalination, ultrapure water production and wastewater treatment, have always faced the severe biofouling problem. The research advances in anti-biofouling reverse osmosis membranes are reviewed based on literatures in recent years. The preparation of anti-adhesion reverse osmosis membranes is firstly introduced, including surface hydrophilicity modification and surface charge modification. The preparation of anti-bacterial reverse osmosis membranes with different kinds of biocide is then described. Advanced anti-biofouling membrane materials are also discussed. Finally prospects of anti-biofouling reverse osmosis membranes are anticipated according to the current research progress.

基金项目:
国家自然科学基金资助项目(51578485);“973”计划资助项目(2015CB655303);教育部博士点资助项目(20130101110064)

作者简介:
第一作者简介:李银(1992-),女,浙江杭州人,硕士生,从事耐污染膜研究。**通讯联系人,TEL:0571-87953802;E-mail:linzhang@zju.edu.cn

参考文献:
 [1] OECD (2012). OECD Environmental Outlook to 2050[EB/OL]. OECD Publishing.
http://dx.doi.org/10.1787/9789264122246-en
[2] Liu Q, Xu G. Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes[J]. Desalination, 2016, 394: 162-175.
[3] 徐建国,尹华. 海水淡化反渗透膜技术的最新进展及其应用[J]. 膜科学与技术,2014, 34(2): 99-105.
[4] Mansouri J, Harrisson S, Chen V. Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities[J]. Journal of Materials Chemistry, 2010, 20(22): 4567.
[5] Flemming H. Reverse osmosis membrane biofouling[J]. Experimental Thermal and Fluid Science, 1997, 14(4): 382-391.
[6] 徐国荣,王生辉,赵河立,等. 海水淡化聚酰胺复合反渗透膜的发展趋势与展望[J]. 膜科学与技术,2015, 35(5): 122-126.
[7] Kim D, Jung S, Sohn J, et al. Biocide application for controlling biofouling of SWRO membranes - an overview[J]. Desalination, 2009, 238(1-3): 43-52.
[8] Ben-Sasson M, Lu X, Bar-Zeev E, et al. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation[J]. Water Research, 2014, 62: 260-270.
[9] 邴绍所,周勇,高从堦. 耐氧化芳香聚酰胺反渗透膜的研究进展[J]. 膜科学与技术,2016, 36(2): 115-121.
[10] Krasner S W, Weinberg H S, Richardson S D, et al. Occurrence of a New Generation of Disinfection Byproducts[J]. Environmental Science & Technology, 2006, 40(23): 7175-7185.
[11] Simon A, Price W E, Nghiem L D. Effects of chemical cleaning on the nanofiltration of pharmaceutically active compounds (PhACs)[J]. Separation and Purification Technology, 2012, 88: 208-215.
[12] Khedr M G. Membrane fouling problems in reverse osmosis desalination plants[J]. Desalination & Water Reuse, 2011, 3(10): 8-17.
[13] Kwak S, Kim S H, Kim S S. Hybrid Organic/Inorganic Reverse Osmosis (RO) Membrane for Bactericidal Anti-Fouling.1. Preparation and Characterization of TiO2 Nanoparticle Self-Assembled Aromatic Polyamide Thin-Film-Composite (TFC) Membrane[J]. Environmental Science & Technology, 2001, 35(11): 2388-2394.
[14] Habimana O, Semião A J C, Casey E. The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes[J]. Journal of Membrane Science, 2014, 454: 82-96.
[15] Terada A, Yuasa A, Tsuneda S, et al. Elucidation of dominant effect on initial bacterial adhesion onto polymer surfaces prepared by radiation-induced graft polymerization[J]. Colloids and Surfaces B: Biointerfaces, 2005, 43(2): 99-107.
[16] 郑猛,吴青芸,周浩媛,等. 海水淡化反渗透膜微生物污染及防控研究进展[J]. 膜科学与技术,2015, 35(1): 123-130.
[17] Sagle A C, Van Wagner E M, Ju H, et al. PEG-coated reverse osmosis membranes: Desalination properties and fouling resistance[J]. Journal of Membrane Science, 2009, 340(1-2): 92-108.
[18] Yu S, Lü Z, Chen Z, et al. Surface modification of thin-film composite polyamide reverse osmosis membranes by coating N-isopropylacrylamide-co-acrylic acid copolymers for improved membrane properties[J]. Journal of Membrane Science, 2011, 371(1-2): 293-306.
[19] Zheng J, Li L, Tsao H, et al. Strong Repulsive Forces between Protein and Oligo (Ethylene Glycol) Self-Assembled Monolayers: A Molecular Simulation Study[J]. Biophysical Journal, 2005, 89(1): 158-166.
[20] Nikkola J, Liu X, Li Y, et al. Surface modification of thin film composite RO membrane for enhanced anti-biofouling performance[J]. Journal of Membrane Science, 2013, 444: 192-200.
[27] Tang C Y, Kwon Y, Leckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes I. FTIR and XPS characterization of polyamide and coating layer chemistry[J]. Desalination, 2009, 242(1-3): 149-167.
[22] 潘春佑,徐国荣,李露,等. 聚酰胺反渗透复合膜改性技术研究进展[J]. 膜科学与技术,2016, 36(6): 133-138
[23] Kang G, Liu M, Lin B, et al. A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol)[J]. Polymer, 2007, 48(5): 1165-1170.
[24] Kang G, Yu H, Liu Z, et al. Surface modification of a commercial thin film composite polyamide reverse osmosis membrane by carbodiimide-induced grafting with poly(ethylene glycol) derivatives[J]. Desalination, 2011, 275(1-3): 252-259.
[25] Azari S, Zou L. Fouling resistant zwitterionic surface modification of reverse osmosis membranes using amino acid l-cysteine[J]. Desalination, 2013, 324: 79-86.
[26] 徐又一,蒋金泓,朱利平,等. 多巴胺的自聚-附着行为与膜表面功能化[J]. 膜科学与技术,2011, 31(3): 32-38.
[27] Karkhanechi H, Takagi R, Matsuyama H. Biofouling resistance of reverse osmosis membrane modified with polydopamine[J]. Desalination, 2014, 336: 87-96.
[28] Mccloskey B D, Park H B, Ju H, et al. Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes[J]. Polymer, 2010, 51(15): 3472-3485.
[29] Zhou Y, Yu S, Gao C, et al. Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance[J]. Separation and Purification Technology, 2009, 66(2): 287-294.
[30] Liu C X, Zhang D R, He Y, et al. Modification of membrane surface for anti-biofouling performance: Effect of anti-adhesion and anti-bacteria approaches[J]. Journal of Membrane Science, 2010, 346(1): 121-130.
[31] Holmlin R E, Chen X, Chapman R G, et al. Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer[J]. Langmuir, 2001, 17(9): 2841-2850.
[32] Ba C, Economy J. Preparation and characterization of a neutrally charged antifouling nanofiltration membrane by coating a layer of sulfonated poly(ether ether ketone) on a positively charged nanofiltration membrane[J]. Journal of Membrane Science, 2010, 362(1-2): 192-201.
[33] Yang R, Xu J, Ozaydin-Ince G, et al. Surface-Tethered Zwitterionic Ultrathin Antifouling Coatings on Reverse Osmosis Membranes by Initiated Chemical Vapor Deposition[J]. Chemistry of Materials, 2011, 23(5): 1263-1272.
[34] Ma R, Ji Y, Weng X, et al. High-flux and fouling-resistant reverse osmosis membrane prepared with incorporating zwitterionic amine monomers via interfacial polymerization[J]. Desalination, 2016, 381: 100-110.
[35] Karkhanechi H, Takagi R, Matsuyama H. Enhanced antibiofouling of RO membranes via polydopamine coating and polyzwitterion immobilization[J]. Desalination, 2014, 337: 23-30.
[36] Zhang T, Zhu C, Ma H, et al. Surface modification of APA-TFC membrane with quaternary ammonium cation and salicylaldehyde to improve performance[J]. Journal of Membrane Science, 2014, 457: 88-94.
[37] Zhang Z, Wang Z, Wang J, et al. Enhancing chlorine resistances and anti-biofouling properties of commercial aromatic polyamide reverse osmosis membranes by grafting 3-allyl-5,5-dimethylhydantoin and N,N′-Methylenebis (acrylamide)[J]. Desalination, 2013, 309: 187-196.
[38] Wei X, Wang Z, Zhang Z, et al. Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5,5-dimethylhydantoin[J]. Journal of Membrane Science, 2010, 351(1-2): 222-233.
[39] Xu J, Wang Z, Yu L, et al. A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties[J]. Journal of Membrane Science, 2013, 435: 80-91.
[40] Saeki D, Nagao S, Sawada I, et al. Development of antibacterial polyamide reverse osmosis membrane modified with a covalently immobilized enzyme[J]. Journal of Membrane Science, 2013, 428: 403-409.
[41] Berliner K, Hershkovitz E, Ronen Z, et al. Immobilization of antimicrobial peptides on reverse osmosis polyamide membranes: Potential biofilm inhibitors?[J]. Biopolymers, 2007, 88(4SI): 602.
[42] Rahaman M S, Therien-Aubin H, Ben-Sasson M, et al. Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes[J]. Journal of Materials Chemistry B, 2014, 2(12): 1724-1732.
[43] Ben-Sasson M, Zodrow K R, Genggeng Q, et al. Surface Functionalization of Thin-Film Composite Membranes with Copper Nanoparticles for Antimicrobial Surface Properties[J]. Environmental Science & Technology, 2014, 48(1): 384-393.
[44] Tu Y, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nature Nanotechnology, 2013, 8(8): 594-601.
[45] Choi W, et al. Layer-by-Layer Assembly of Graphene Oxide Nanosheets on Polyamide Membranes for Durable Reverse-Osmosis Applications[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12510-12519.
[46] Yin J, Yang Y, Hu Z, et al. Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling[J]. Journal of Membrane Science, 2013, 441: 73-82.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号