等离子体引发表面两性离子化制备抗污染性PVDF膜 |
作者:李壹竹,宋伟龙,李之鹏,尤宏 |
单位: 哈尔滨工业大学(威海) 海洋科学与技术学院,山东威海 264209 |
关键词: PVDF膜;等离子体接枝;两性离子化;抗污染性能 |
DOI号: |
分类号: X703.1 |
出版年,卷(期):页码: 2018,38(2):29-36 |
摘要: |
为了提高聚偏氟乙烯(PVDF)膜的抗污染性能,首先采用等离子体技术将甲基丙烯酸二甲胺乙酯(DMAEMA)接枝到PVDF膜表面,然后使其与3-溴丙酸(3-BPA)发生季铵化反应,最终得到两性离子化改性膜(PVDF-g-PCBMA)。利用傅利叶红外光谱仪(FTIR-ATR)、扫描电子显微镜(SEM)、接触角测定仪分析改性前后PVDF膜表面化学官能团、结构形态以及亲疏水性的变化。通过动态过滤实验来考察原膜、改性膜对牛血清蛋白(BSA)和海藻酸钠(SA)的抗污染性能。结果表明,相比于原PVDF膜,PVDF-g-PCBMA膜的接触角从88.3°降至39.0°,亲水性得到了较大的提高;另外,其在BSA和SA溶液的过滤实验中通量衰减率降低、清洗后的清水通量恢复率升高,体现了两性离子化改性膜良好的抗污染性能。 |
In order to improve the antifouling performance of polyvinylidene fluoride (PVDF) membrane, dimethylamine ethyl methacrylate (DMAEMA) was first grafted onto the surface of PVDF membrane by plasma technology, and then reacted with 3-bromopropionic acid (3-BPA) by quaternization reaction., and finally the zwitterionic modified membrane(PVDF-g-PCBMA) was obtained. The chemical functional groups, structural morphology and hydrophobicity of PVDF membrane were analyzed by Fourier transform infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM) and contact angle analyzer. The antifouling properties of the original membrane and the modified membrane against bovine serum albumin (BSA) and sodium alginate (SA) were investigated by dynamic filtration experiment. The result shows that the contact angle of PVDF-g-PCBMA membrane decreases from 88.27 ° to 39 ° comparing to the original membrane, and the hydrophilicity of PVDF-g-PCBMA membrane is improved greatly. The flux reduction rate of BSA and SA decreases, and the water flux recovery rate increases after cleaning, reflecting the good antifouling performance of the zwitterionic modified membrane. |
基金项目: |
基金项目:2017年山东省自然科学基金(ZR2017MEE020) |
作者简介: |
第一作者简介:李壹竹(1994-),女,辽宁省葫芦岛市人,硕士研究生,研究方向为膜改性及其抗污染性能研究,E-mail:496438918@qq.com 通讯作者,E-mail:youhong@hit.edu.cn |
参考文献: |
[1] Y Chang, YJ Shih, RC Ruaan, et al. Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility[J]. J Membr Sci, 2008, 309:165-174. [2] A Akthakul, RF Salinaro, AM Mayes. Antifouling polymer membranes with subnanometer size selectivity[J]. Macromolecules, 2004, 37:7663. [3] JQ Meng, CL Chen, LP Huang, et al. Surface modification of PVDF membrane via AGET ATRP directly from the membrane surface[J]. Appl Surf Sci, 2011, 257:6282-6290. [4] S Boributh, A Chanachai, R Jiraratananon. Modification of PVDF membrane by chitosan solution for reducing protein fouling[J]. J Membr Sci, 2009, 342:97-104. [5] X Zhao, H Xuan, A Qin, et al. Improved antifouling property of PVDF ultrafiltration membrane with plasma treated PVDF powder[J]. Rsc Adv, 2015, 5:64526-64533. [6] M He, K Gao, L Zhou, et al. Zwitterionic materials for antifouling membrane surface construction[J]. Acta Biomater, 2016, 40:142-152. [7] 冯霞, 王倩, 白静娜, 等. 两性离子聚合物表面改性的聚偏氟乙烯抗污染膜的制备及性能[J]. 高分子材料科学与工程, 2014, 30(07):71-75. [8] AS Abednejad, G Amoabediny, A Ghaee. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization[J]. Mater Sci & Eng C, 2014, 42:443-450. [9] 申向, 尹学彬, 赵义平, 陈莉. 聚两性电解质修饰聚偏氟乙烯膜的制备及抗污染性能[J]. 高分子材料科学与工程, 2016, 32(06):166-170. [10] 李妍, 周晓吉, 沈舒苏, 等. 一种两亲性共聚物的合成及其对PVDF膜的改性研究[J]. 膜科学与技术, 2016, 36(06):70-77. [11] S Bhatt, G Ceccone, P Lisboa, et al. Nanostructure Protein Repellant Amphiphilic Copolymer Coatings with Optimized Surface Energy by Inductively Excited Low Pressure Plasma[J]. Langmuir:the Acs Journal of Surfaces & Colloids, 2011, 27:14570-14580. [12] J Zhao, Q Shi, SF Luan, et al. Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer[J]. J Membr Sci, 2011, 369:5-12. [13] 周桂花, 肖峰, 肖萍, 等. 两性离子在聚偏氟乙烯(PVDF)膜表面接枝改性的研究[J]. 环境科学, 2013, 34(10):3945-3953. [14] SH Chen, Y Chang, KR Lee, et al. Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization[J]. Langmuir:the Acs Journal of Surfaces & Colloids, 2012, 28:17733-17742. [15] Y Qian, L Chi, W Zhou, et al. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment[J]. Appl Surf Sci, 2016, 360:749-757. [16] S Liang, G Qi, K Xiao, et al. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors[J]. J Membr Sci, 2014, 463:94-101. [17] XL Wang, JF Wei, Z Dai, et al. Preparation and characterization of negatively charged hollow fiber nanofiltration membrane by plasma-induced graft polymerization[J]. Desalination, 2012, 286:138-144. [18] E Kim, Q Yu, B Deng. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling[J]. Appl Surf Sci, 2011, 257:9863-9871. [19] X Zhao, A Qin, D Liu, et al. RSC Advances Tuning the antifouling property of PVDF ultrafiltration membrane with surface anchored polyelectrolyte complexes for sewage treatment[J]. RSC Adv, 2015, 5:63580-63587. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号