碳氟基团修饰的多孔陶瓷膜润湿性、表面自由能及渗透性能的研究
作者:王煜琨,韦奇,张少康,李群艳,聂祚仁
单位: 北京工业大学材料科学与工程学院,北京100124
关键词: 十七氟癸基;多孔陶瓷膜;表面自由能;润湿性;渗透性能
DOI号:
分类号: O614.3+1
出版年,卷(期):页码: 2018,38(2):52-59

摘要:
 以十七氟癸基三乙氧基硅烷和乙醇分别作为修饰剂和溶剂,通过后接枝法将十七氟癸基修饰到γ/α-Al2O3多孔陶瓷膜表面,对碳氟基团修饰的γ/α-Al2O3多孔陶瓷膜表面形貌、化学组成、亲/疏水性进行表征,并考察接枝的碳氟基团对其表面自由能和气体/纯水渗透性能的影响。结果表明,碳氟基团的引入极大地降低了γ/α-Al2O3多孔陶瓷膜的表面自由能,使其表面发生从亲水到疏水的转变。接枝到γ/α-Al2O3多孔陶瓷膜孔道的碳氟基团一定程度上增加了气阻,使得气体渗透率略有下降,气体分子在孔道内的输运遵循Knudsen扩散机制。压差0.35MPa条件下,纯水不能透过修饰后的α-Al2O3以及修饰后的γ/α-Al2O3多孔陶瓷膜。
 Fluorocarbon groups were silylated on porous γ/α-Al2O3 ceramic membranes via post-grafting process with 1H,1H,2H,2H-Perflouorodecyltriethoxysilane(PFDTES) as silylation agent and ethanol as solvent. The surface morphology, chemical composition and wettability of the silylated porous γ/α-Al2O3 ceramic membranes were characterized. The influence of fluorocarbon groups on the surface free energy and gas/pure water permeation performance of the obtained materials was also investigated in detail. The results show that the incorporation of fluorocarbon greatly reduces the surface free energy of porous γ/α-Al2O3 ceramic membranes, and leads to a transformation from hydrophility to hydrophobicity. A slight decrease of gas permeance is observed due to the pore blocking of porous γ/α-Al2O3 ceramic membranes by fluorocarbon groups. The transport of gas molecules in the pore channels complies with Knudsen diffusion. Liquid water is not able to permeate the silylated porous α-Al2O3 ceramic and the silylated γ/α-Al2O3 ceramic membranes under a pressure difference of 0.35MPa. 

基金项目:
国家自然科学基金(21171014),北京市教委科技计划重点项目(KZ201410005006)

作者简介:
第一作者简介:王煜琨(1991-),男,甘肃武威人,硕士生,从事用于气体分离的微孔膜材料的制备与表征. *通讯作者,E-mail:qiwei@bjut.edu.cn

参考文献:
 [1] 任建新.膜分离技术及其应用[M].北京:化学工业出版社,2003,441-449.
[2] Kujawski W, Krajewska S, Kujawski M, et al. Pervaporation properties of fluoroalkylsilane (FAS) grafted ceramic membranes[J]. Desalination, 2007, 205(1): 75-86.
[3] Fang H, Gao J F, Wang H T, et al. Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process[J]. J Membr Sci, 2012, 403–404: 41-46.
[4] 孟广耀, 董强, 刘杏芹, 等. 无机多孔分离膜的若干新进展[J]. 膜科学与技术, 2003, 23(4): 261-268.
[5] Ren X, Kanezashi M, Nagasawa H, et al. Preparation of organosilica membranes on hydrophobic intermediate layers and evaluation of gas permeation in the presence of water vapor[J]. J Membr Sci, 2015, 496: 156-164.
[6] Kujawa J, Cerneaux S, Kujawski W. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes[J]. J Membr Sci, 2015, 474: 11-19.  
[7] Kujawski W, Kujawa J, Wierzbowska E, et al. Influence of hydrophobization conditions and ceramic membranes pore size on their properties in vacuum membrane distillation of water–organic solvent mixtures[J]. J Membr Sci, 2016, 499: 442-451.
[8] Ren C, Fang H, Gu J, et al. Preparation and characterization of hydrophobic alumina planar membranes for water desalination[J]. J Eur Ceram Soc, 2015, 35(2): 723-730.
[9] Zhang J W, Fang H, Wang J W, et al. Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination[J]. J Membr Sci, 2014, 450(2): 197-206.
[10] 韦奇, 李建林, 宋春林, 等. 憎水二氧化硅膜的制备、表征及水热稳定性研究[J]. 无机材料学报, 2004,  19(2): 417-423.
[11] 洪志发, 韦奇, 李国华, 等. 三氟丙基修饰的二氧化硅膜制备、氢气分离及其水热稳定性能[J]. 无机化学学报, 2013, 29(5): 941-947.
[12] 刘相革, 韦奇, 丁元利, 等. 十三氟辛基修饰的疏水有机-无机杂化二氧化硅膜孔结构、氢气分离及水热稳定性[J]. 无机化学学报, 2014, 30(5): 1111-1118.
[13] Gabino F, Belleville M P, Preziosi-Belloy L, et al. Evaluation of the cleaning of a new hydrophobic membrane for osmotic evaporation[J]. Sep Purif Technol, 2007, 55(2):191-197.
[14] Vargas-Garcia A, Torrestiana-Sanchez B, Garcia-Borquez A, et al. Effect of grafting on microstructure, composition and surface and transport properties of ceramic membranes for osmotic evaporation[J]. Sep Purif Technol, 2011, 80(3):473-481.
[15] Kujawa J, Rozicka A, Cerneaux S, et al. The influence of surface modification on the physicochemical properties of ceramic membranes[J]. Colloids Surf. A, 2014, 443(4): 567-575.
[16] Kujawa J, Cerneaux S, Kujawski W. Highly hydrophobic ceramic membranes applied to the removal of volatile organic compounds in pervaporation[J]. Chem Eng J, 2015, 260:43-54.
[17] Lu J, Yu Y, Zhou J, et al. FAS grafted superhydrophobic ceramic membrane[J]. Appl Sur Sci, 2009, 255(22):9092-9099.
[18] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem, 1936, 28(8): 988-994.
[19] 侯维敏, 于云, 胡学兵, 等. Al2O3微滤膜的超疏水改性研究[J]. 无机材料学报, 2013, 28(8): 864-868.
[20] Yoshida W, Cohen Y. Topological AFM characterization of graft polymerized silica membranes[J]. J Membr Sci, 2003, 215(1): 249-264.
[21] Wei C C, Li K. Preparation and characterization of a robust and hydrophobic ceramic membrane via an improved surface grafting technique[J]. Ind Eng Chem Res, 2009, 48(7): 3446-3452.
[22] Owens D K, Wendt R C. Estimation of the surface free energy of polymers[J]. J Appl Polym Sci, 1969, 13(8): 1741–1747.
[23] Kaelble D H. Dispersion-Polar Surface Tension properties of organic solids[J]. J Adhes, 2008, 2(2): 66-81.
[24] Bothun G D, Peay K, Ilias S. Role of tail chemistry on liquid and gas transport through organosilane-modified mesoporous ceramic membranes[J]. J Membr Sci, 2007, 301(1):162-170.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号