基于促进传递机理的一氧化碳分离膜研究进展
作者:冯世超,罗建泉,万印华
单位: 生化工程国家重点实验室,中国科学院过程工程研究所,中国科学院大学,北京100190
关键词: 一氧化碳分离;促进传递;膜分离;络合作用
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2018,38(2):119-124

摘要:
 本论文对基于促进传递机理的CO分离膜技术的现状进行了总结,重点介绍了促进传递膜对CO/N2的分离机理及促进传递载体的研究进展,同时展望了膜分离技术应用于CO气体分离的前景及研究方向。
  In this paper current status of membrane technology for CO/N2 separation based on facilitated transport mechanism was summarized. The facilitated transport mechanism for CO/N2 separation and the performance of facilitated transport carriers for CO were emphasized. Meantime, the perspective of membrane technology in CO separation was discussed.

基金项目:
国家自然科学基金项目(21406235)

作者简介:
第一作者简介:冯世超(1984-),女,河北邯郸人,博士,副研究员,从事膜分离研究,scfeng@ipe.ac.cn. 通讯联系人, yhwan@ipe.ac.cn

参考文献:
 [1] Peng J, Xian S, Xiao J, et al. A supported Cu (I)@ MIL-100 (Fe) adsorbent with high CO adsorption capacity and CO/N2 selectivity[J]. Chem. Eng. J., 2015, 270: 282-289.
[2] DeCoste J B, Peterson G W. Metal–organic frameworks for air purification of toxic chemicals[J]. Chem. Rev., 2014, 114(11): 5695-5727.
[3] 任春艳. 中国东海和黄海中一氧化碳的生物地球化学研究[D]. 中国海洋大学, 2010.
[4] Xie Y, Zhang J, Qiu J, et al. Zeolites modified by CuCl for separating CO from gas mixtures containing CO2[J]. Adsorption, 1997, 3(1): 27-32.
[5] 李克兵, 武立新, 李洁. 变压吸附法回收炼钢转炉气技术[J]. 炼钢, 2001, 17(1): 58-60.
[6] 刘晓勤, 马正飞, 姚虎卿. 变压吸附法回收高炉气中 CO 的研究[J]. 化学工程, 2003, 31(6): 54-57.
[7] David O C, Gorri D, Urtiaga A, et al. Mixed gas separation study for the hydrogen recovery from H2/CO/N2/CO2 post combustion mixtures using a Matrimid membrane[J]. J. Membr. Sci., 2011, 378(1): 359-368.
[8] David O C, Gorri D, Nijmeijer K, et al. Hydrogen separation from multicomponent gas mixtures containing CO, N2 and CO2 using Matrimid® asymmetric hollow fiber membranes[J]. J. Membr. Sci., 2012, 419: 49-56.
[9] Baker R W. Future directions of membrane gas separation technology[J]. Industrial & engineering chemistry research, 2002, 41(6): 1393-1411.
[10] 汤娇娣, 孙艳. 一氧化碳分离提纯技术进展[J]. 天然气化工: C1 化学与化工, 2012, 37(5): 62-67.
[11] Zarca G, Ortiz I, Urtiaga A. Copper(I)-containing supported ionic liquid membranes for carbon monoxide/nitrogen separation[J]. J. Membr. Sci., 2013, 438: 38-45.
[12] Azhin M, Kaghazchi T, Rahmani M. A review on olefin/paraffin separation using reversible chemical complexation technology[J]. J. Ind. Eng. Chem., 2008, 14(5): 622-638.
[13] 田志章, 李奕帆, 姜忠义, 等. 用于生物气提纯的促进传递膜[J]. 化工学报, 2014, 65(5): 1594-1601.
[14] David O C, Zarca G, Gorri D, et al. On the improved absorption of carbon monoxide in the ionic liquid 1-hexyl-3-methylimidazolium chlorocuprate[J]. Sep. Purif. Technol., 2012, 97: 65-72.
[15] Yang R T, Adsorbents: fundamentals and applications, John Wiley & Sons, 2003.
[16] G.S. Patil S B, N.N. Dutta. Facilitated transport of carbon monoxide: A review[J]. Gas Sep. Purif., 1991, 5(2-8.
[17] Smith D R, Quinn J A. The facilitated transport of carbon monoxide through cuprous chloride solution[J]. AlChE J., 1980, 26(1): 112-120.
[18] Lozano L J, Godínez C, de los Ríos A P, et al. Recent advances in supported ionic liquid membrane technology[J]. J. Membr. Sci., 2011, 376(1-2): 1-14.
[19] Gorji A H, Kaghazchi T. CO2/H2 separation by facilitated transport membranes immobilized with aqueous single and mixed amine solutions: experimental and modeling study[J]. J. Membr. Sci., 2008, 325(1): 40-49.
[20] Camper D, Scovazzo P, Koval C, et al. Gas solubilities in room-temperature ionic liquids[J]. Ind. Eng. Chem. Res., 2004, 43(12): 3049-3054.
[21] Noble R D, Gin D L. Perspective on ionic liquids and ionic liquid membranes[J]. J. Membr. Sci., 2011, 369(1-2): 1-4.
[22] Hopkinson D, Zeh M, Luebke D. The bubble point of supported ionic liquid membranes using flat sheet supports[J]. J. Membr. Sci., 2014, 468: 155-162.
[23] Fallanza M, Ortiz A, Gorri D, et al. Experimental study of the separation of propane/propylene mixtures by supported ionic liquid membranes containing Ag+–RTILs as carrier[J]. Sep. Purif. Technol., 2012, 97: 83-89.
[24] Liu Z, Liu C, Li L F, et al. CO2 separation by supported ionic liquid membranes and prediction of separation performance[J]. Int. J. Greenhouse Gas Control, 2016, 53(79-84.
[25] Fan T T, Xie W L, Ji X Y, et al. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective Choline Pro /PEG200 mixtures[J]. Chin. J. Chem. Eng., 2016, 24(11): 1513-1521.
[26] Zarca G, Ortiz I, Urtiaga A. Behaviour of 1-hexyl-3-methylimidazolium chloride-supported ionic liquid membranes in the permeation of CO2, H2, CO and N2 single and mixed gases[J]. Desalination and Water Treatment, 2015, 56(13): 3640-3646.
[27] He W, Zhang F, Wang Z, et al. Facilitated Separation of CO2 by Liquid Membranes and Composite Membranes with Task-Specific Ionic Liquids[J]. Ind. Eng. Chem. Res., 2016, 55(49): 12616-12631.
[28] Zarca G, Home W J, Ortiz I, et al. Synthesis and gas separation properties of poly(ionic liquid)-ionic liquid composite membranes containing a copper salt[J]. J. Membr. Sci., 2016, 515: 109-114.
[29] Pinnau I, Toy L G. Solid polymer electrolyte composite membranes for olefin/paraffin separation[J]. J. Membr. Sci., 2001, 184(1): 39-48.
[30] 郭利中, 李雪楼. σ-π配键与CO中毒的机理[J]. 开封医专学报, 1995, 04: 228-230.
[31] Koval C, Noble R, Way J, et al. Selective transport of gaseous carbon monoxide through liquid membranes using an iron (II) macrocyclic complex[J]. Inorg. Chem., 1985, 24(8): 1147-1152.
[32] Sharma C, Goswami P, Dutta N. Studies on facilitated transport of carbon monoxide using a novel iron (II) complex[J]. Sep. Sci. Technol., 1993, 28(9): 1789-1797.
[33] Yoon J W, Seo Y K, Hwang Y K, et al. Controlled reducibility of a metal–organic framework with coordinatively unsaturated sites for preferential gas sorption[J]. Angew. Chem., 2010, 122(34): 6085-6088.
[34] Martín-Calvo A, Lahoz-Martín F D, Calero S. Understanding carbon monoxide capture using metal–organic frameworks[J]. J. Phys. Chem. C, 2012, 116(11): 6655-6663.
[35] Bloch E D, Hudson M R, Mason J A, et al. Reversible CO binding enables tunable CO/H2 and CO/N2 separations in metal–organic frameworks with exposed divalent metal cations[J]. J. Am. Chem. Soc., 2014, 136(30): 10752-10761.
[36] 荆钰, 郭金涛, 王重庆, et al. 金属有机骨架材料MIL-100(Fe)的一氧化碳吸附性能[J]. 天然气化工(C1化学与化工), 2011, 05: 33-36.
[37] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. science, 2008, 321(5887): 385-388.
[38] Traversi F, Russo V, Sordan R. Integrated complementary graphene inverter[J]. Appl. Phys. Lett., 2009, 94(22): 150.
[39] Liu G, Jin W, Xu N. Graphene-based membranes[J]. Chem. Soc. Rev., 2015, 44(15): 5016-5030.
[40] Schedin F, Geim A, Morozov S, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature materials, 2007, 6(9): 652-655.
[41] Leenaerts O, Partoens B, Peeters F M. Adsorption of small molecules on graphene[J]. Microelectron. J., 2009, 40(4): 860-862.
[42] Leenaerts O, Partoens B, Peeters F. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study[J]. Phys. Review B, 2008, 77(12): 125416.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号