新型电响应型导电聚苯胺智能膜的制备及抗污染性能研究
作者:徐莉莉
单位: 1. 中国科学院生态环境研究中心环境水质学国家重点实验室, 北京 100085 2. 英国巴斯大学化学与工程学院, 英国巴斯 BA2 7AY 3. 中国科学院生态环境研究中心高浓度难降解有机废水处理技术国家工程实验室,北京100085 4. 中国科学院生态环境研究中心工业废水处理与资源化北京市重点实验室,北京100085 5. 中国科学院大学,北京 100049
关键词: 聚苯胺,电响应,膜污染,智能膜
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2018,38(3):55-62

摘要:
 传统膜材料在制备成膜后,膜的选择透过性难以通过外界刺激进行在线智能化控制。基于此,本研究以导电聚苯胺(PANI)为膜材料,采用化学氧化聚合法将聚(2-丙烯酰胺-2-甲基-1-丙磺酸)酸(PAMPSA)引入到聚苯胺分子链结构中制备导电聚苯胺(PANI-PAMPSA),然后采用非溶剂致相转化法制备PAMPSA掺杂的聚苯胺膜,考察在电压作用下导电聚苯胺膜的电响应性能(选择透过性能的变化)以及抗污染性能。在电压作用下纯水和中性分子聚乙二醇(PEG)的膜过滤实验发现,外加电压可提高膜通量,对中性物质聚乙二醇(PEG)的截留率降低约10%,这表明外加电压可在线调控导电聚苯胺膜的选择透过性。通过在电压作用下膜的抗污染性能研究发现,清洗液中的BSA浓度从30 min的4.97×10-3 g L-1增加到120 min的5.39×10-2 g L-1,膜通量恢复率为46.6%,说明外加电压可提高膜的抗污染性能。该导电聚苯胺膜将电化学与膜技术结合,通过外加电压在线调节膜的选择透过性,提供了清除膜污染的一种新思路,可作为一种膜生物反应器的新型抗污染膜材料。
As conventional membranes cannot have their physical and chemical properties tuned in-situ to offer control of membrane performance during operation, there is a need for stimuli responsive membranes which can self-regulatively adjust their performance in response to chemical and/or physical stimuli in the environments. Despite extensive efforts in designing electrically conductive polyaniline (PANI) membranes, there remains an insufficient understanding of the electrically induced transformations in these membranes, especially the control over membrane separation and transportation through the application of electrical potentials.
In this study, we focused on the electrical tuneability of PANI membrane in response to the externally applied potential and firstly proposed the hypothesis of electrical tuneability in PANI membranes. PANI was synthesised via chemical oxidation of aniline whereby PAMPSA serve as templates and flat sheet PANI membranes were prepared via non-solvent induced phase separation (NIPS). In terms of tuneable properties under applied electrical potential, the permeance of the in-situ doped PANI-PAMPSA membrane could be varied during cross-flow filtration and bovine serum albumin (BSA) foulant could be removed. This new PANI synthesis method therefore opens the pathway for more filtration stable electrically tuneable membranes to be produced, enabling a new range of applications to be developed (such as anti-fouling membranes).

基金项目:
国家重点研发计划课题2016YFC0400501,国家自然科学基金51578533

作者简介:
徐莉莉,1988年11月,山东蓬莱,研究方向:电响应膜制备与应用,E-mail:xllmyname@163.com

参考文献:
[1] F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, F. Yang, Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material, Water research, 43 (2009) 1489-1512.
[2] A. Drews, Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures, Journal of membrane science, 363 (2010) 1-28.
[3] R.B. Kaner, Gas, liquid and enantiomeric separations using polyaniline, Synthetic metals, 125 (2001) 65-71.
[4] D. Roy, J.N. Cambre, B.S. Sumerlin, Future perspectives and recent advances in stimuli-responsive materials, Progress in Polymer Science, 35 (2010) 278-301.
[5] C. Liangyin, X. Rui, J. Xiaojie, Stimuli-responsive membranes: smart tools for controllable mass-transfer and separation processes, Chinese Journal of Chemical Engineering, 19 (2011) 891-903.
[6] D. Wandera, S.R. Wickramasinghe, S.M. Husson, Stimuli-responsive membranes, Journal of Membrane Science, 357 (2010) 6-35.
[7] M.A.C. Stuart, W.T. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, Emerging applications of stimuli-responsive polymer materials, Nature materials, 9 (2010) 101-113.
[8] D.L. Pile, A.C. Hillier, Electrochemically modulated transport through a conducting polymer membrane, Journal of membrane science, 208 (2002) 119-131.
[9] C. Weidlich, K.-M. Mangold, Electrochemically switchable polypyrrole coated membranes, Electrochimica Acta, 56 (2011) 3481-3484.
[10] S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline, Progress in Polymer Science, 34 (2009) 783-810.
[11] E. Genies, A. Boyle, M. Lapkowski, C. Tsintavis, Polyaniline: a historical survey, Synthetic Metals, 36 (1990) 139-182.
[12] M. Sairam, S.K. Nataraj, T.M. Aminabhavi, S. Roy, C.D. Madhusoodana, Polyaniline Membranes for Separation and Purification of Gases, Liquids, and Electrolyte Solutions, Separation & Purification Reviews, 35 (2006) 249-283.
[13] J. Pellegrino, The Use of Conducting Polymers in Membrane‐Based Separations, Annals of the New York Academy of Sciences, 984 (2003) 289-305.
[14] E.M. Andrade, F.V. Molina, M.I. Florit, D. Posadas, Volume Changes of Poly (2‐methylaniline) upon Redox Switching Anion and Relaxation Effects, Electrochemical and Solid-State Letters, 3 (2000) 504-507.
[15] L. Xu, S. Shahid, J. Shen, E. Emanuelsson, D.A. Patterson, A wide range and high resolution one-filtration molecular weight cut-off method for aqueous based nanofiltration and ultrafiltration membranes, Journal of Membrane Science, 525 (2017) 304–311.
[16] C. Yan, L. Zou, R. Short, Polyaniline-modified activated carbon electrodes for capacitive deionisation, Desalination, 333 (2014) 101-106.
[17] X.M. Feng, R.M. Li, Y.W. Ma, R.F. Chen, N.E. Shi, Q.L. Fan, W. Huang, One‐Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications, Advanced Functional Materials, 21 (2011) 2989-2996.
[18] K.R. Reddy, B.C. Sin, K.S. Ryu, J. Noh, Y. Lee, In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: Synthesis, morphology, structure and electrical conductivity, Synthetic Metals, 159 (2009) 1934-1939.
[19] J. Jang, J. Ha, J. Cho, Fabrication of Water‐Dispersible Polyaniline‐Poly (4‐styrenesulfonate) Nanoparticles For Inkjet‐Printed Chemical‐Sensor Applications, Advanced materials, 19 (2007) 1772-1775.
[20] L. Hechavarr??a, H. Hu, M.E. Rincón, Polyaniline–poly (2-acrylamido-2-methyl-1-propanosulfonic acid) composite thin films: structure and properties, Thin Solid Films, 441 (2003) 56-62.
[21] O. Misoon, K. Seok, Effect of dodecyl benzene sulfonic acid on the preparation of polyaniline/activated carbon composites by in situ emulsion polymerization, Electrochimica Acta, 59 (2012) 196-201.
[22] J.-W. Jeon, J. O’Neal, L. Shao, J.L. Lutkenhaus, Charge storage in polymer acid-doped polyaniline-based layer-by-layer electrodes, ACS applied materials & interfaces, 5 (2013) 10127-10136.
[23] R. Rohani, Linking the Microstructural and Separation Properties of Electrically Tuneable Polyaniline Pressure Filtration Membranes, in, University of Auckland, Auckland, 2013.
[24] L. Xu, S. Shahid, A.K. Holda, E.A.C. Emanuelsson, D.A. Patterson, Stimuli responsive conductive polyaniline membrane: In-filtration electrical tuneability of flux and MWCO, Journal of Membrane Science, 552 (2018) 153-166.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号