中空纤维膜组件壳体流体分布与阻力研究 |
作者:庄黎伟1,2,许振良1, |
单位: 1.西陇科学股份有限公司,广东,汕头,515000;2.化学工程国家重点实验室,华东理工大学膜科学与工程研发中心,上海,200237 |
关键词: 中空纤维膜组件;CFD;流体分布;阻力 |
DOI号: |
分类号: TQO51.8;TQO21.1 |
出版年,卷(期):页码: 2018,38(3):25-33 |
摘要: |
采用计算流体力学(CFD)和辅助实验的方法,在操作流量范围内(4.62~20 m3·h-1),研究了中空纤维膜组件壳体的流动分布和各部件阻力。研究结果显示:壳体各部件的阻力随着体积流量的增大而增大,且增速均不断提高;顶部胶水层的阻力曲线较其他部件,更接近线性。随操作流量的提高,顶部胶水层阻力占总能耗的比例不断下降,而其余部件则相反。整个壳体惯性阻力系数较高,所以在实际操作过程中,高流量运行会降低总能耗分配于过滤推动力的比例。底部分布器造成不均匀的初始流动分布,但分布的均匀性会随着高度的增大而变好。在组件正常操作流量范围,壳体内速度分布仅与几何结构有关,与操作流量无关。 |
Computational fluid dynamics (CFD) simulation and supplementary experiment have been conducted to investigate the fluid distribution inside the hollow fiber membrane module housing and the fluid resistance caused by individual part of the housing within the operating volumetric flow rate range (4.62~20 m3·h-1). The results showed that the fluid resistance caused by every individual part of the housing increased as the volumetric flow rate increased with an accelerated increase rate. As for the fluid resistance caused by the upper resin, it increased almost linearly with the volumetric flow rate. As the volumetric flow rate increased, the proportion of the energy consumption of upper resin decreased whereas the ones of the other parts of housing increased. The ratio of the inertial resistance to the overall resistance is high for the housing. Therefore, the effective energy consumption as the driving force of the filtration will be low if the hollow fiber membrane module is operated with a high volumetric flow rate. The lower manifold caused non-uniform initial fluid distribution, which will get increasingly more uniform as the fluid flowed upward. In normal operating volumetric flow rate range, the fluid distribution within the housing depends on the structure of the housing and is independent of the volumetric flow rate. |
基金项目: |
广东省“扬帆计划”引进创新创业团队项目资助(2016YT03C010),汕头市引进科技创新创业团队计划资助,国家自然科学基金(21706066) |
作者简介: |
庄黎伟(1988-),男,江苏丹阳市人,博士,主要从事膜设备设计与膜过程强化的CFD研究。E-mail: zlwdml3344@hotmail.com *通讯作者,E-mail: chemxuzl@ecust.edu.cn |
参考文献: |
[1] Hennessy J, Livingston A, Baker R. Membranes from academia to industry[J]. Nat Mater. 2017, 16(3): 280-282. [2] Yang X, Wang R, Fane A G, et al. Membrane module design and dynamic shear-induced techniques to enhance liquid separation by hollow fiber modules: a review[J]. Desal Water Treat. 2013, 51(16-18): 3604-3627. [3] Mahon H I. Permeability separatory apparatus, permeability separatory membrane element, method of making the same and process utilizing the same[P]. US Patents 3,228,876, 1966. [4] Mahon H I. Permeability separatory apparatus and process utilizing hollow fibers[P]. US Patents 3,228,877, 1966. [5] Günther J, Hobbs D, Albasi C, et al. Modeling the effect of packing density on filtration performances in hollow fiber microfiltration module: A spatial study of cake growth[J]. J Membr Sci. 2012, 389: 126-136. [6] Günther J, Schmitz P, Albasi C, et al. A numerical approach to study the impact of packing density on fluid flow distribution in hollow fiber module[J]. J Membr Sci. 2010, 348(1): 277-286. [7] Bessiere Y, Fletcher D F, Bacchin P. Numerical simulation of colloid dead-end filtration: Effect of membrane characteristics and operating conditions on matter accumulation[J]. J Membr Sci. 2008, 313(1): 52-59. [8] Kim J, Digiano F A. Defining critical flux in submerged membranes: influence of length-distributed flux[J]. J Membr Sci. 2006, 280(1): 752-761. [9] Chang S, Fane A G, Vigneswaran S. Modeling and optimizing submerged hollow fiber membrane modules[J]. AIChE J. 2002, 48(10): 2203-2212. [10] Kaya R, Deveci G, Turken T, et al. Analysis of wall shear stress on the outside-in type hollow fiber membrane modules by CFD simulation[J]. Desalination. 2014, 351: 109-119. [11] Zhuang L, Guo H, Dai G, et al. Effect of the inlet manifold on the performance of a hollow fiber membrane module-A CFD study[J]. J Membr Sci. 2017, 526: 73-93. [12] Buetehorn S, Volmering D, Vossenkaul K, et al. CFD simulation of single-and multi-phase flows through submerged membrane units with irregular fiber arrangement[J]. J Membr Sci. 2011, 384(1): 184-197. [13] Amini E, Mehrnia M R, Mousavi S M, et al. Experimental Study and Computational Fluid Dynamics Simulation of a Full-Scale Membrane Bioreactor for Municipal Wastewater Treatment Application[J]. Ind Eng Chem Res. 2013, 52: 9930-9939. [14] Rahimi M, Madaeni S S, Abbasi K. CFD modeling of permeate flux in cross-flow microfiltration membrane[J]. J Membr Sci. 2005, 255(1-2): 23-31. [15] Fluent I. Fluent User’s Guide [Z]. Fluent Inc. 2006. [16] 庄黎伟,戴干策. 中空纤维超滤膜组件通量分布的数值模拟[J]. 膜科学与技术. 2016, 36(2): 86-95. [17] Zhuang L, Dai G, Xu Z. Three-dimensional simulation of the time-dependent fluid flow and fouling behavior in an industrial hollow fiber membrane module[J]. AIChE J. 2018, DOI: 10.1002/aic.16090. [18] Idelchik I E. Fluid dynamics of industrial equipment-flow distribution design methods[M]. Washington: Taylor & Francis Inc, 1992: 1-403. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号