正渗透膜生物反应器与反渗透耦合系统的运行性能研究 |
作者:朱卫军1,王新华1,2,李秀芬1,2,任月萍1,2 |
单位: 1.江南大学 环境与土木工程学院,无锡 214122; 2.江苏省厌氧生物技术重点实验室,无锡 214122 |
关键词: 微滤;正渗透;反渗透;盐度累积;汲取液回收 |
DOI号: |
分类号: X703.1 |
出版年,卷(期):页码: 2018,38(3):104-109 |
摘要: |
针对目前正渗透膜生物反应器(OMBR)存在的汲取液回收和盐分积累的问题,借助反渗透(RO)膜的高效截留性能和微滤(MF)膜允许溶解性盐透过的特性,构建了新型的MF-OMBR-RO组合系统。结果表明,由于MF的引入,OMBR中的盐度稳定在1.95-2.43 mS/cm,盐度积累得到缓解。采用RO膜与FO膜进行耦合,可以将稀释后的汲取液电导率从33 mS/cm浓缩至45 mS/cm,同步实现汲取液的回收和水的回用。MF-OMBR-RO系统能够有效去除有机物、氮和磷等污染物,其中RO出水可以作为高品质水进行回用,而MF出水能够满足城市杂用水的要求。与三醋酸纤维(CTA)和聚酰胺(TFC)材质的FO膜相比,水通道蛋白FO膜的运行通量略低,但是其生物污染较轻。 |
In order to overcome the problems including draw solute recovery and salt accumulation associated with the osmotic membrane bioreactors (OMBR), a new OMBR system assisted with microfiltration (MF) membrane for discharging soluble salts and reverse osmosis (RO) membrane for recovering draw solute was proposed in this study. The results indicated that the salinity in the bioreactor was controlled in the range of 1.95-2.43mS/cm due to the introduction of MF membrane. RO membrane could effectively concentrate the draw solution from 33 mS/cm to 45 mS/cm, and thus achieving the simultaneous recovery of draw solute and water. The MF-OMBR-RO system effectively removed the organic matters, ammonia nitrogen and phosphorus, i.e., the RO permeate could be reused as a high quality water while MF effluent was suitable for urban miscellaneous water. Compared with the commercial forward osmosis (FO) membrane made of cellulose triacetate (CTA) and thin-film composite polyamide (TFC), the aquaporin FO membrane used in this study had a lower initial water flux but a more stable operating flux due to a lower biofouling. |
基金项目: |
国家自然科学基金项目(51578265) |
作者简介: |
朱卫军(1989-),男,江苏东台人,硕士生,主要从事污水处理与资源化研究,E-mail:m18800583921@163.com *通讯联系人,E-mail:xhwang@jiangnan.edu.cn |
参考文献: |
[1] Cornelissen E R, Harmsen D, de Korte KF, et al. Membrane fouling and process performance of forward osmosis membranes on activated sludge[J]. J Membr Sci, 2008, 319: 158–168. [2] Coday B D, Xu P, Beaudry E G, et al. The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams[J]. Desalination, 2014, 333: 23–35. [3] Linares R V, Yangali-Quintanilla V, Li Z Y, et al. Rejection of micropollutants by clean and fouled forward osmosis membrane[J]. Water Res, 2011, 45: 6737–6744. [4] Xie M, Nghiem L D, Price W E, et al. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis[J]. Water Res, 2012, 46: 2683–2692. [5] Zhang S, Wang P, Fu X, et al. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD)[J]. Water Res, 2014, 52: 112–121. [6] Wang X H, Yuan B, Chen Y, et al. Integration of micro-filtration into osmotic membrane bioreactors to prevent salinity build-up[J]. Bioresour Technol, 2014, 167: 116–123. [7] Luo W H, Phan H V, Xie M, et al. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: biological stability, membrane fouling, and contaminant removal[J]. Water Res, 2017, 109: 122–134. [8] 国家环境保护总局,水和废水监测分析方法编委会.水和废水检测分析方法[M].(第四版).北京:中国环境科学出版社,2002. [9] Wang X H, Zhao Y X, Yuan B, et al. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors[J]. Bioresour Technol, 2016, 202: 50–58. [10] Yuan B, Wang X H, Tang C Y, et al. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy[J].Water Res, 2015, 75: 188–200. [11] Wang X H, Zhao Y X, Li X F, et al. Performance evaluation of microfiltration-osmotic membrane bioreactor (MF-OMBR) during removing silver nanoparticles from simulated wastewater[J]. Chem Eng J, 2017, 313: 171–178. [12] Choi B G, Kim D I, Hong S. Fouling evaluation and mechanisms in a FO-RO hybrid process for direct potable reuse[J]. J Membr Sci, 2016, 520: 89–98. [13] Zaviska F, Chun Y, Heran M, et al. Using FO as pre-treatment of RO for high scaling potential brackish water: Energy and performance optimisation[J]. J Membr Sci, 2015, 492: 430–438. [14] Xie M, Gray S R.[J]. Sep Purif Technol, 2016, 167: 6–16. [15] Wang X H, Chang V W C, Tang C Y Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future[J]. J Membr Sci, 2016, 504: 113–132. [16] Liu J M, Wang X H, Wang Z W, et al. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bioelectricity and water recovery from low-strength wastewater[J]. Water Res, 2017, 110: 74–82. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号