基于双层复合基膜的界面聚合正渗透膜的制备及表征
作者:宋阳1,蒋兰英
单位: 1.中南大学冶金与环境学院,湖南长沙,410083;2. 国家重金属污染防治工程技术研究中心,湖南长沙,410083
关键词: 正渗透;界面聚合;基膜;内浓差极化
DOI号:
分类号: TQ9
出版年,卷(期):页码: 2018,38(3):75-82

摘要:
以不同结构的双层PEEK-WC中空纤维为基膜制备了界面聚合正渗透复合膜。基膜外表面孔径会对界面聚合层产生影响,小孔径的表面有利于形成更致密、截留性能更高的聚酰胺层。支撑层孔隙率提升和表面孔径及孔隙率增大会推高通量。ICP现象不仅受支撑层的影响,还受到汲取液种类的影响。与NaCl相比,使用Na2SO4做汲取液使水通量提高1.3-1.6倍,反向盐通量降低76%-95%。
 FO membranes were prepared by interfacial polymerization using double-layer PEEK-WC hollow fiber membranes with different structures as support. The outer surface of the support influenced the interface polymerized layer. The polyamide layer on the surface with smaller pore size was denser. Higher porosity and increased pore size/porosity on membrane surface enhanced membrane flux. The ICP phenomenon was affected not only by the support layer, but also the type of draw solution. In comparison with NaCl, the use of Na2SO4 as draw solution increased the water flux by 1.3-1.6 times and reduced the reverse salt flux decreased by 76% -95%.

基金项目:

作者简介:
宋 阳(1991-),男,湖北省武汉人,硕士生,主要从事正渗透膜分离技术研究。*通讯作者,E-mail:jianglanyingsme@csu.edu.cn

参考文献:
 [1] 邹士洋, 张建平, 伍俊荣,等. 新型膜分离技术——正向渗透及其应用[J]. 中国给水排水, 2008, 24(24):16-19..
[2] 李刚, 李雪梅, 柳越,等. 正渗透原理及浓差极化现象[J]. 化学进展, 2010, 22(5):812-821.
[3] Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281, 70-87[J]. J. Membr. Sci., 2006, 281(1-2):70-87.
[4] Tiraferri A, Yip N Y, Phillip W A, et al. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure[J].J.Membr.Sci.,2011, 367(1):340-352.
[5] Ma N, Wei J, Qi S, et al. Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes[J]. J. Membr. Sci., 2013, 441(15):54-62.
[6] Emadzadeh D, Lau W J, Matsuura T, et al. Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization[J]. J. Membr. Sci., 2014, 449(1):74-85. 
[7] Tian E L, Zhou H, Ren Y W, et al. Novel design of hydrophobic/hydrophilic interpenetrating network composite nanofibers for the support layer of forward osmosis membrane[J]. Desalination, 2014, 347(17):207-214.
[8] Xiao P, Long D N, Yin Y, et al. A sacrificial-layer approach to fabricate polysulfone support for forward osmosis thin-film composite membranes with reduced internal concentration polarisation[J]. J. Membr. Sci., 2015, 481:106-114.
[9] Stillman D, Krupp L, La Y H. Mesh-reinforced thin film composite membranes for forward osmosis applications: The structure performance relationship[J]. J. Membr. Sci., 2014, 468(468):308-316.
[10] Bonyadi S, Tai S C. Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes[J]. J. Membr. Sci., 2007, 306(1):134-146.
[11] He T, Mulder M H V, Strathmann H, et al. Preparation of composite hollow fiber membranes: co-extrusion of hydrophilic coatings onto porous hydrophobic support structures[J]. J. Membr. Sci., 2002, 207(2):143-156.
[12] Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments[J]. J. Membr. Sci., 2006, 281(1-2):70-87.
[13] Ming X, Price W E, Long D N, et al. Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis[J]. J. Membr. Sci., 2013, 438(7):57-64.
[14] Lobo V M M. Mutual diffusion coefficients in aqueous electrolyte solutions (Technical Report)[J]. Pure Appl. Chem., 1993, 65(12):2613-2640.
[15] Huang L, Mccutcheon J R. Impact of support layer pore size on performance of thin film composite membranes for forward osmosis[J]. J. Membr. Sci., 2015, 483:25-33.
[16] 肖婷婷, 刘仁啸, 陈刚,等. 中空纤维复合正渗透膜的表征[J]. 膜科学与技术, 2016, 36(4):54-59.
[17] Hickenbottom K L, Hancock N T, Hutchings N R, et al. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations[J]. Desalination, 2013, 312(3):60-66.
[18] Shi L, Chou S R, Wang R, et al. Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes[J]. J. Membr. Sci., 2011, 382(1):116-123.
[19] Singh P S, Joshi S V, Trivedi J J, et al. Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions[J]. J. Membr. Sci., 2006, 278(1):19-25.
[20] Tansel B, Sager J, Rector T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes[J]. Sep. Purif. Technol., 2006, 51(1):40-47.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号