热致相分离法制备亲水性聚丙烯中空纤维膜
作者:王芳12, 王娟123, 赵雅静12, 程兰12, 李庆广4, 李凭力12
单位: 1.天津大学, 化工学院, 天津 300350; 2.天津大学, 天津市膜科学与海水淡化重点实验室, 天津 300350; 3.威海拓展碳纤维有限公司, 威海 264200; 4.河北旭阳焦化有限公司, 定州073000
关键词: 亲水改性;热致相分离法;聚丙烯;聚甲基丙烯酸甲酯
DOI号:
分类号: TQ028.8
出版年,卷(期):页码: 2018,38(3):68-74

摘要:
 本文通过热致相分离法(TIPS),利用亲水性聚合物聚甲基丙烯酸甲酯(PMMA)来提高聚丙烯(iPP)中空纤维膜的亲水性,并获得了不同PMMA浓度下的改性聚丙烯中空纤维膜。利用傅里叶红外光谱、X射线光电子能谱、扫描电镜及接触角测量仪等方法表征了iPP膜的组成、结构以及亲水性等性能。结果表明: PMMA的添加提高了膜的亲水性、水通量;当PMMA的添加量为10%时,接触角从125°降到67°,平均孔径从0.17μm增加到0.30μm,水通量为1256L/ (m2 h),相比于纯聚丙烯膜提高了167%
 The hydrophilic character of isotactic polypropylene(iPP) hollow fiber membrane was improved by blendinghydrophilic polymer polymethylmethacrylate(PMMA) via thermally induced phase separation. Hydrophilicity of iPPmembraneswas optimized by variation of PMMA concentration in iPP/PMMA/DBP/DOP blend system using dibutyl phthalate (DBP) and dioctyl phthalate (DOP) as mixed diluent. The compositions, structural morphorlogy and hydrophilicity were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and contact angle measuring meter. The experimental results showed that the hydrophilicity and water flux of the blended membranes were enhanced siginificantly due to the addition of PMMA; the contact angle decreased to 67°from 125°and the water flux increased to 1256 L/ (m2 h) with 10% of PMMA added, improving by 167% compared to neat iPP membrane.

基金项目:

作者简介:
王芳(1991- ), 女, 湖北襄阳人, 硕士生, 主要研究聚丙烯膜的制备及改性, E-mail:hbwf77@163.com * 通讯作者, E-mail: lipingli@tju.edu.cn

参考文献:
 [1]Vasile C Handbook of polyolefins 2nd ed[M]. New Work: Marcel Dekker, 2000
[2]Xu Q, Yang J, Dai J, et al.Hydrophilization of porous polypropylene membranes by atomic layer deposition of TiO2 for simultaneously improved permeability and selectivity[J]. J MembrSci, 2013, 448(24): 215-222.
[3]侯文贵,李凭力,张翠兰,等. 热致相分离制备聚丙烯微孔膜微观结构的研究[J].膜科学与技术, 2003, 23(2):27-31.
[4]Kou RQ, Xu ZK, Deng HT, et al. Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of α-allylglucoside[J]. Langmuir, 2003, 19(17): 6869-6875
[5]Yang Z, Chang H, Li P, et al.Thermodynamics of thermally induced phase separation of iPP-DBP-DOP ternary solution by pseudo-binary approach[J]. J ChemIndustrEng, 2005, 56(6): 981-988
[6]Salas C, Genzer J, Lucia LA, et al. Water-wettable polypropylene fibers by facile surface treatment based on soy proteins[J]. ACS Appl Mater Interfaces, 2013, 5(14): 6541-6548
[7]尹艳红,王辉,刘玉霞,等.聚丙烯微孔膜表面接枝聚合丙烯酰胺的改性研究[J].膜科学与技术, 2008, 28(1): 55-59
[8]Wang Y, Kim JH, Choo KH, et al. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization[J]. J MembrSci, 2000, 169(2): 269-276
[9]Yang Q, Xu ZK, Dai ZW, et al. Surface modification of polypropylene microporous membranes with a novel glycopolymer[J].Chem Mater, 2005, 17(11): 3050-3058
[10]Guo H, Ulbricht M. The effects of (macro) molecular structure on hydrophilic surface modification of polypropylene membranes via entrapment[J]. J Colloid Interface Sci, 2010, 350(1): 99-109
[11]Kou RQ, Xu ZK, Deng HT, et al. Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of α-allylglucoside[J]. Langmuir, 2003, 19(17): 6869-6875
[12]Jaleh B, Parvin P, Wanichapichart P, et al. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma[J].Appl Surf Sci, 2010, 257(5): 1655-1659
[13]Zou L, Vidalis I, Steele D, et al. Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling[J]. J MembrSci, 2011, 369(1?2): 420-428
[14]He XC, Yu HY, Tang ZQ, et al. Reducing protein fouling of a polypropylene microporous membrane by CO2 plasma surface modification[J]. Desalination, 2009, 244(1): 80-89
[15]Yu HY, Hu MX, Xu ZK, et al. Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3 plasma treatment[J]. Sep PurifTechnol, 2005, 45(1): 8-15
[16]韩怀远,张蕾,冯春磊,等.热致相分离法制备聚丙烯-聚氯乙烯共混疏水微孔膜及其膜蒸馏性能[J].膜科学与技术, 2016, 36(2): 48-54
[17]Krishnan NN, Lee HJ, Kim HJ, et al. Sulfonated poly (ether sulfone)/sulfonated polybenzimidazole blend membrane for fuel cell applications[J].EurPolym J, 2010, 46(7): 1633-1641
[18]Saffar A, Carreau PJ, Ajji A, et al. Development of polypropylene microporous hydrophilic membranes by blending with PP-g-MA and PP-g-AA[J]. J MembrSci, 2014, 462(28): 50-61
[19]Gao YJ, Liu ZY, Yin CL, et al. Preparing iPP/HDPE/CB functionally gradient materials: influence factors of components and processing[J].PolymAdvTechnol, 2012, 23(3): 695-701
[20]Ma T, Cui Z, Wu Y, et al. Preparation of PVDF based blend microporous membranes for lithium ion batteries by thermally induced phase separation: I. Effect of PMMA on the membrane formation process and the properties[J]. J MembrSci, 2013, 444(10): 213-222
[21]Sharma M, Madras G, Bose S, et al. Unique nanoporous antibacterial membranes derived through crystallization induced phase separation in PVDF/PMMA blends[J]. J Mater Chem A, 2015, 3(11): 5991-6003
[22]Ochoa N, Masuelli M, Marchese J. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes[J]. J MembrSci, 2003, 226(1?2): 203-211
[23]Liu XM, Wang ZH, Yu B, et al. PMMA modified PVDF hollow fiber ultrafiltration membranes[J]. Adv Mater Res, 2012, 465: 229-233
[24]Huang C, Zhang L. Miscibility of poly (vinylidene fluoride) and atactic poly (methyl methacrylate) [J]. J Appl Poly Sci, 2004, 92(1?4): 1-5
[25]Wang Z, Yu H, Xia J, et al. Novel GO-blended PVDF ultrafiltration membranes[J]. Desalination, 2012 299: 50-54.
[26]Elashmawi I, Hakeem N. Effect of PMMA addition on characterization and morphology of PVDF[J]. PolymEngSci, 2008, 48(5): 895-901
[27]Coleman MM, Painter PC. Hydrogen bonded polymer blends[J]. ProgPolymSci, 1995, 20(1): 1-59
[28]McGuire KS, Laxminarayan A, Lloyd DR. Kinetics of droplet growth in liquid—liquid phase separation of polymer—diluent systems: experimental results[J]. Polymer, 1995, 36: 4951-4960.
[29]Zinadini S, Zinatizadeh AA, Rahimi M, et al. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates[J]. J MembrSci, 2014, 453: 292-301.
[30]Shi F, Ma Y, Ma J, Wang P, Sun W, et al. Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2[J]. J MembrSci, 2012, 389: 522-531.
[31]Lin DJ, Chang CL, Lee CK et al. Preparation and characterization of microporous PVDF/PMMA composite membranes by phase inversion in water/DMSO solutions[J]. EurPolym J, 2006, 42(10): 2407-2418

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号