微反应位(MRLs)的构建对聚合物膜性能的影响研究
作者:张裕卿
单位: 天津大学化工学院,天津 300072
关键词: 无机功能材料;非化学计量材料;固体超强酸;微反应位
DOI号:
分类号: TQ316.6
出版年,卷(期):页码: 2018,38(3):134-143

摘要:
?本文综述了微反应位(MRLs)的构建对聚合物膜性能的影响。由于现有的无机功能材料存在着表面羟基数有限,路易斯酸位少等缺点,而非化学计量无机功能材料表面存在着大量的羟基和丰富的路易斯酸位,具有优越的亲水性,将其填充到聚合物膜中使膜的综合性能得到显著提高。然而通过掺杂这些材料制备的杂化膜仅仅依赖着流体和膜表面间的物理作用来提高膜的性能,没有通过化学反应去除膜表面的污染物。针对废水中的污染物,我们制备了一系列新型的功能材料,能够在聚合物膜的表面和孔道内部形成MRLs,并有效地分解有机物、微生物和无机污染物,显著提高膜的耐污染性能、亲水性能和抗压实性能。
  The formation of micro reaction locations (MRLs) and its effect on the properties of polymer membranes were studied. Though the performance of polymer membranes can be enhanced by adding functional inorganic materials, further enhancement is limited because there are few Lewis acid sites and hydroxide radicals on the surface of these inorganic functional materials. In pursuit of better performance, nonstoichiometric inorganic functional materials with various point defects and numerous exposed hydroxide radicals were used as filler to improve the hydrophilicity and antifouling properties of the membranes. However, the above methods just doped inorganic functional materials into polymer membranes by physical interaction on the interface between aqueous solution and the membrane, without any chemical interaction. In order to further enhance anti-fouling property and hydrophilicity of membranes, the membranes should be modified by doping novel small size functional materials, which can form MRLs inside channels and on the surface of the membrane to effectively degrade organic, inorganic pollutants and microbes.

基金项目:
国家自然科学基金(21676180), 天津市科技支撑重点项目(15ZCZDSF00160), 天津市科技兴海计划 (KJXH2014-05)

作者简介:
张裕卿,博士(后),教授,从事化工功能材料及在化工分离、环境、能源和生物医药等方面的研究工作。Tel:86-22-13602077041,E-mail:zhangyuqing@tju.edu.cn

参考文献:
[1] Lee A, Elam J W, Darling S B. Membrane Materials for Water Purification: Design Development and Application[J]. Environmental Science Water Research & Technology, 2016, 2(1):17-42.
[2] 敖漉, 刘文君, 方振东,等. 超滤膜污染的主要成因与控制膜污染的预处理技术[J]. 后勤工程学院学报, 2017, 33(4):41-47. 
[3] F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci. 2011. 375. 1–27.
[4] C.H. Yu, L.C. Fang, S.K. Lateel, C.H. Wu, C.F. Lin, Enzymatic treatment forcontrolling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration, J. Hazard. Mater. 177. 2010. 1153–1158
[5] Zhang, Y. and M. Cui. Porous YxFeyZr1−x−yO2 coated TiO2 solid superacid particles/PVDF hybrid membranes with anti-fouling property, Chemical Engineering Journal. 2016. 301: 342-352.
[6] W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, L. Jiang, Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux, Adv. Mater. 2013.25. 2071–2076.
[7] S. Kim, L. Chen, J.K. Johnson, E. Marand, Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment, J. Membr. Sci. 294. 2007. 147–158.
[8] J. Ahn, W.J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation, J. Membr. Sci. 314.2008. 123–133.
[9] J. Ahn, W.J. Chung, I. Pinnau, J. Song, N. Du, G.P. Robertson, M.D. Guiver, Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1), J. Membr. Sci. 346. 2010. 280–287.
[10] Y. Zhang, L. Shan, Z. Tu, Y. Zhang, Preparation and characterization of novel Ce doped nonstoichiometric nanosilica/polysulfone composite membranes, Sep. Purif. Technol. 63. 2008. 207–212
[11] Zhang Y, Cui P, Du T, et al. Development of a sulfated Y-doped nonstoichiometric zirconia/polysulfone composite membrane for treatment of wastewater containing oil [J]. Separation & Purification Technology, 2009, 70(2): 153-159.
[12] Zhang Y, Jin Z, Shan X, et al. Preparation and characterization of phosphorylated Zr-doped hybrid silica/PSF composite membrane [J]. Journal of Hazardous Materials, 2011, 186(1): 390-5.
[13] Zhang, Y. and P. Liu. Polysulfone(PSF) composite membrane with micro-reaction locations (MRLs) made by doping sulfated TiO2 deposited on SiO2 nanotubes (STSNs) for cleaning wastewater. Journal of Membrane Science. 2015. 493: 275-284.
[14] Zhang, Y., et al. ZrO2 solid superacid porous shell/void/TiO2 core particles (ZVT)/polyvinylidene fluoride (PVDF) composite membranes with anti-fouling performance for sewage treatment. Chemical Engineering Journal. 2015. 260: 258-268.
[15] Zhang, Y., et al. Effect of doping porous ZrO2 solid superacid shell/void/TiO2 core nanoparticles (ZVT) on properties of polyvinylidene fluoride (PVDF) membranes. Desalination. 2015. 358: 84-93.
[16] Kogler M, Köck E M, Vanicek S, et al. Enhanced kinetic stability of pure and Y-doped tetragonal ZrO2.[J]. Inorganic Chemistry, 2014, 53(24):13247-57.
[17] Wang, Peng Cheng, Zhu, Jie, Liu, Xiang. Regioselective Nitration of Aromatics with Nanomagnetic Solid Superacid SO42−/ZrO2‐MxOy‐Fe3O4 and Its Theoretical Studies[J]. Chempluschem, 2013, 78(4):310-317.
[18] Zhang, Y. and M. Cui. Porous YxFeyZr1−x−yO2 coated TiO2 solid superacid particles/PVDF hybrid membranes with anti-fouling property. Chemical Engineering Journal, 2016. 301: 342-352.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号