静电纺丝纤维膜水力渗透性研究 |
作者:蔡景成,孙瑞松,张智昊,郭飞 |
单位: 大连理工大学能源与动力学院,辽宁省 大连市 116023 |
关键词: 水力渗透性;纤维膜;静电纺丝;孔隙率 |
DOI号: |
分类号: O484.2 |
出版年,卷(期):页码: 2018,38(3):41-46 |
摘要: |
本文通过静电纺丝技术纺制不同直径的聚丙烯腈(PAN)纤维膜,并对纤维膜在不同流速下进行了水力渗透实验。采用Darcy定理对水力渗透系数进行分析计算并对膜压缩过程进行分析。利用Happel方程来分析计算纤维膜孔隙率的变化。分析表明纤维膜水力渗透系数与水的流速,纤维丝直径,膜的孔隙率等因素有关。随流速增加,纤维膜承受压力增加,纤维发生滑移导致纤维丝之间由点接触变为面接触,同时纤维发生变形,孔隙率降低,水力渗透系数降低。纤维丝直径越大,孔隙率越小,水力渗透系数越大,相同流速下渗透压越小,孔隙率和水力渗透系数变化量越大。 |
?Polyacrylonitrile (PAN) fibrous membranes with various fiber diameters were fabricated by electrospinning. The hydraulic permeability with various flow velocities was tested on the lab scale unit and analyzed based on Darcy's theory and Happel's model. The relations between fiber diameter, porosity, flow rate, and compressibility were studied. The results indicated that the electrospun membranes experience an increase of fiber diameter and decreases of porosity and hydraulic permeability with the increase of the flow velocity. This was due to the increasing fiber slippage and fiber–fiber contact at a higher pressure by the flow-induced compression. The hydraulic permeability and porosities of the PAN membranes with smaller fiber diameters were smaller than that of the membranes with greater fiber diameters over the range of test pressures. |
基金项目: |
中央高校基本科研业务费专项资金 (DUT17JC05)。 |
作者简介: |
蔡景成(1990 - ),男,河南省漯河人,博士研究生,研究方向为膜法脱盐。 通讯作者:郭飞,教授,博士生导师,研究方向为先进膜材料、碳素纳米材料。E-mail:feiguo@dlut.edu.cn |
参考文献: |
[1] Ahmed F E, Lalia B S, Hashaikeh R. A review on electrospinning for membrane fabrication: Challenges and applications[J]. Desalination. 2015, 356: 15-30. [2] 顾红霞,潘凯,董泽刚,等. 聚丙烯腈静电纺丝膜表面界面聚合制备复合纳滤膜[J]. 膜科学与技术. 2012, 32(6): 50-54. [3] Guo F, Servi A, Liu A, et al. Desalination by Membrane Distillation using Electrospun Polyamide Fiber Membranes with Surface Fluorination by Chemical Vapor Deposition[J]. ACS Appl. Mater. Interfaces. 2015, 7(15): 8225. [4] Choong L T, Khan Z, Rutledge G C. Permeability of electrospun fiber mats under hydraulic flow[J]. J. Membr. Sci. 2014, 451(1): 111-116. [5] 覃小红,王新威,胡祖明,等. 静电纺丝聚丙烯腈纳米纤维工艺参数与纤维直径关系的研究[J]. 东华大学学报(自然科学版). 2005, 31(6): 16-22. [6] 常敏,李从举. 静电纺纳米纤维的应用[J]. 合成纤维工业. 2007, 30(4): 50-52. [7] Choong L T S, Lin Y, Rutledge G C. Separation of oil-in-water emulsions using electrospun fiber membranes and modeling of the fouling mechanism[J]. J. Membr. Sci. 2015, 486(Supplement C): 229-238. [8] Attia H, Alexander S, Wright C J, et al. Superhydrophobic electrospun membrane for heavy metals removal by air gap membrane distillation (AGMD)[J]. Desalination. 2017, 420: 318-329. [9] Pascariu P, Airinei A, Olaru N, et al. Microstructure, electrical and humidity sensor properties of electrospun NiO-SnO2 nanofibers[J]. Sens. Actuators, B. 2016, 222: 1024-1031. [10] Chang I S, Lee C H. Membrane filtration characteristics in membrane-coupled activated sludge system — the effect of physiological states of activated sludge on membrane fouling[J]. Desalination. 1998, 120(3): 221-233. [11] 刘刚,张朋,李伟东,等. 结构化增韧层增韧RTM复合材料预成型体的渗透特性[J]. 复合材料学报. 2015, 32(2): 586-593. [12] Manesh K M, Santhosh P, Gopalan A, et al. Electrospun poly(vinylidene fluoride)/ poly(aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor[J]. Anal. Biochem. 2007, 360(2): 189-195. [13] Choong L T, Mannarino M M, Basu S, et al. Compressibility of electrospun fiber mats[J]. J. Membr. Sci. 2013, 48(22): 7827-7836. [14] 刘建军,张盛宗,刘先贵,胡雅礽. 裂缝性低渗透油藏流-固耦合理论与数值模拟[J]. 力学学报. 2002, 34(05): 779-784. [15] 刘文超,姚军,陈掌星,等. 低渗透多孔介质渗流动边界模型的解析与数值解[J]. 力学学报. 2015, 47(4): 605-612. [16] 赵艳娜,俞炜,周持兴. 纤维微结构与横向渗透率的关系[J]. 复合材料学报. 2011, 2(02): 49-53. [17] 耿奕,蒋金华,陈南梁. 经编四轴向玻璃纤维织物的渗透行为和渗透率[J]. 纺织学报. 2017, 10(10): 49-56. [18] Darcy H. Les fontaines publiques de la ville de Dijon: exposition et application...[M]. Victor Dalmont, 1856. [19] 陶然,权晓波,徐建中. 微尺度流动研究中的几个问题[J]. 工程热物理学报. 2001, 22(5): 575-577. [20] Jönsson A S, Bengt T L J. Fluid flow in compressible porous media: I: Steady-state conditions[J]. AIChE J. 1992, 38(9): 1340-1348. [21] Happel J. Viscous flow relative to arrays of cylinders[J]. AIChE J. 1959, 5(2): 174-177. [22] 顾加兴. 改性聚丙烯腈超滤膜性能研究[D]. 华东理工大学, 2017. [23] Yang M C, Liu T Y. The permeation performance of polyacrylonitrile/polyvinylidene fluoride blend membranes[J]. J. Membr. Sci. 2003, 226(1–2): 119-130. [24] Cai J, Guo F. Study of mass transfer coefficient in membrane desalination[J]. Desalination. 2017, 407: 46-51. [25] 欧阳琴,陈友汜,王雪飞,等. 聚丙烯腈原丝中毛丝的结构与性能研究[J]. 高科技纤维与应用. 2011, 36(04): 12-16. [26] 郝俊杰,吕春祥,周普查,等. 聚丙烯腈基初生纤维在牵伸过程中凝聚态结构变化的研究[J]. 化工新型材料. 2014, 42(01): 131-133. [27] Toll S. Packing mechanics of fiber reinforcements[J]. Polym. Eng. Sci. 1998, 38(8): 1337-1350. [28] 刘茜. 纤维集合体压缩力学行为的研究:1.压缩特征曲线的表征与特征值的提取[J]. 纺织学报. 2009, 30(03): 22-27. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号