碳纳米管中间层 高性能正渗透复合膜的制备与研究 |
作者:周宗尧1,3,胡云霞2,李金强2,王群2,安晓婵1,3,王平2 |
单位: 1. 中国科学院烟台海岸带研究所 中国科学院海岸带环境过程与生态修复重点实验室,山东烟台 264003; 2. 天津工业大学 省部共建分离膜与膜过程国家重点实验室 天津300389; 3. 中国科学院大学 北京 100049 |
关键词: 正渗透膜;聚酰胺复合膜;中间层;碳纳米管 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2018,38(3):34-40 |
摘要: |
为了制备兼具高通量和高盐截留的聚酰胺正渗透复合膜,我们采用喷涂的方法在传统聚砜基底制备构建超薄碳纳米管(CNTs)中间层,并在碳纳米管中间层表面界面聚合制备聚酰胺层。本文从聚酰胺复合膜的支撑层和活性层之间的界面调控入手,系统研究了CNTs中间层对聚酰胺(PA)活性层生成过程和形貌结构的影响,并测试分析了CNTs中间层对聚酰胺复合膜正渗透性能的影响。实验结果表明,喷涂CNTs中间层的复合正渗透膜显著提升了水通量,在1 mol/L NaCl溶液作为汲取液的情况,复合膜在PRO模式下的平均水通量达33.27 L·m-2·h-1,较未含有CNTs中间层的复合膜通量提升了55.18%,而且“净盐通量”下降了26.63%,仅为0.047 g/L。为此,通过构建碳纳米管(CNTs)中间层, 可大幅提升聚酰胺复合正渗透膜的水通透性,同时并不牺牲复合膜的盐截留性能,克服传统正渗透复合膜的水渗透-盐截留trade-off效应。 |
To fabricate high performance thin film composite forward osmosis membrane with great permeability and selectivity, we spray coated an ultrathin CNT film on the polysulfone membrane support and synthesized the polyamide on top of the CNT interlayer to achieve TFC FO membrane. Our results found that the TFC FO membrane with the CNTs interlayer provided a favorable surface to helps to optimize the structure of the TFC FO membrane. The selective permeability of the TFC FO membrane was greatly improved. PSf-CNTs-PA FO membrane achieved an excellent water flux of 33.27 L· m-2· h-1,raising by 55.18% compared with PSf-PA FO membrane without a CNTs interlayer; specific reverse salt flux of the PSf-CNTs-PA FO membrane was 0.047 g/L, decreasing by 26.63%. |
基金项目: |
国家自然科学基金委(No. 21476249, No. 51708408),烟台市重点研发计划(No. 2015ZH063),天津市重大平台项目 |
作者简介: |
姓名(1992-),男,山东滨州人,在读硕士,从事海水资源化利用与正渗透膜的开发应用,E-mail:zhouzongyao1992@163.com 通讯作者,E-mail:yunxiahu@yic.ac.cn |
参考文献: |
[1] Lau W J, Ismail A F, Misdan N, et al. A recent progress in thin film composite membrane: A review[J]. Desalination, 2012, 287, 190-199. [2] Shaffer D L, Werber J R, Jaramillo H, et al. Forward osmosis: Where are we now[J]? Desalination, 2015, 356, 271-284. [3] Chung T S, Zhang S, Wang KY, et al. Forward osmosis processes: Yesterday, today and tomorrow[J]. Desalination, 2012, 287, 78-81. [4] Cath T Y, Childress A E, Elimelech M, Forward osmosis: Principles, applications, and recent developments [J]. J Membr Sci, 2006, 281 (1-2), 70-87. [5] Wang Y N, Goh K, Li X S, et al. Membranes and processes for forward osmosis-based desalination: Recent advances and future prospects [J]. Desalination, 2017. [6] Hoover L A, Phillip W A, Tiraferri A, et al. Forward with osmosis: emerging applications for greater sustainability [J]. Environ Sci Technol, 2011, 45 (23), 9824-30. [7] Klaysom C, Cath T Y, Depuydt T, et al. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply [J]. Chem Soc Rev, 2013, 42 (16), 6959-89. [8] Ansari A J, Hai F I, Price W E, et al. Forward osmosis as a platform for resource recovery from municipal wastewater - A critical assessment of the literature [J]. J Membr Sci, 2017, 529, 195-206. [9] Martinetti C R, Childress A E, Cath T Y, High recovery of concentrated RO brines using forward osmosis and membrane distillation[J]. J Membr Sci, 2009, 331 (1-2), 31-39. [10] Wang Q, Gao X L, Zhang Y S, et al. Alleviation of water flux decline in osmotic dilution by concentration-dependent hydraulic pressurization[J]. Chem Eng Res Des, 2017, 117, 593-603. [11] Yip N Y, Tiraferri A, Phillip W A, et al. High performance thin-film composite forward osmosis membrane[J]. Environ. Sci. Technol, 2010, 44 (10),3812-3818. [12] Ren J, McCutcheon J R, A new commercial thin film composite membrane for forward osmosis[J]. Desalination, 2014, 343, 187-193. [13] Song X X, Liu Z Y, Sun D D, Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate [J]. Adv Mater, 2011, 23 (29), 3256-60. [14] Wang J J, Yang H C, Wu M B, et al. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance[J]. J. Mater. Chem. A, 2017, 5 (31), 16289-16295. [15] Wu M B, Lv Y, Yang H C, et al. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances[J]. J Membr Sci, 2016, 515, 238-244. [16] Zhu Y C, Xie W, Gao S, et al. Single-Walled Carbon Nanotube Film Supported Nanofiltration Membrane with a Nearly 10 nm Thick Polyamide Selective Layer for High-Flux and High-Rejection Desalination[J]. Small, 2016, 12 (36), 5034-5041. [17] Zhao X Z, Li J, Liu C K, A novel TFC-type FO membrane with inserted sublayer of carbon nanotube networks exhibiting the improved separation performance[J]. Desalination, 2017, 413, 176-183. [18] Liu Z Y, An X C, Dong C H, et al. Modification of thin film composite polyamide membranes with 3D hyperbranched polyglycerol for simultaneous improvement in their filtration performance and antifouling properties[J]. J. Mater. Chem. A, 2017, 5 (44), 23190-23197. [19] Tiraferri A, Yip N Y, Straub A P, et al. A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes[J]. J Membr Sci, 2013, 444, 523-538. [20] Ghosh A K, Hoek E M V, Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes[J]. J Membr Sci, 2009, 336 (1-2), 140-148. [21] Huang L W, McCutcheon J R, Impact of support layer pore size on performance of thin film composite membranes for forward osmosis[J]. J Membr Sci, 2015, 483, 25-33. [22] Jimenez-Solomon M F, Gorgojo P, Munoz-Ibanez M, et al. Beneath the surface: Influence of supports on thin film composite membranes by interfacial polymerization for organic solvent nanofiltration[J]. J Membr Sci, 2013, 448, 102-113. [23] Karan S, Jiang Z W, Livingston A G, Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. science, 2015, 348 (6241), 1347-1351. [24] Yan H, Miao X P, Xu J, et al. The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes[J]. J Membr Sci, 2015, 475, 504-510. [25] Zhang X Y, Tian J Y, Ren Z J, et al. High performance thin-film composite (TFC) forward osmosis (FO) membrane fabricated on novel hydrophilic disulfonated poly (arylene ether sulfone) multiblock copolymer/polysulfone substrate[J]. J Membr Sci, 2016, 520, 529-539. [26] Liang H Q, Hung W S, Yu H H, et al. Forward osmosis membranes with unprecedented water flux[J]. J Membr Sci, 2017, 529, 47-54. [27] Han G, Zhao B W, Fu F J, Chung T S, et al. High performance thin-film composite membranes with mesh-reinforced hydrophilic sulfonated polyphenylenesulfone (sPPSU) substrates for osmotically driven processes [J]. J Membr Sci, 2016, 502, 84-93. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号