阳极施加恒电位对EAM-MFC启动性能改善的研究
作者:梁晶晶12,吴云12,王珍琼12,楚红亮3,韩璐洁2,张宏伟12,孙中芳
单位: 1天津工业大学 省部共建分离膜与膜过程国家重点实验室,天津 300387; 2 天津工业大学 环境与化学工程学院,天津 300387 3中海油天津化工研究设计院有限公司,天津 300131
关键词: 微生物燃料电池;导电曝气阴极;脱氮;恒电位;FISH
出版年,卷(期):页码: 2018,38(6):76-83

摘要:
 微生物燃料电池(MFC)普遍存在启动速度慢的现象,且启动方式对阴阳极性能影响较大。本文通过对阳极施加恒电位对比分析了恒电位对以导电曝气膜组件为生物阴极的微生物燃料电池(EAM-MFC)系统启动过程和生物阴极性能作用的影响。结果表明,在系统阳极施加-290 mV恒电位的启动方式较常规方式能够在使系统启动周期缩短的同时明显提升阴极脱氮性能,阴极电势和电池的输出电压分别较常规启动方式提高84 ± 1.51 mV和127 ± 2.09 mV;阴极室COD、氨氮、总氮去除率分别提高32.77 %、10.09 %和21.42 %;此外,外加电位能够刺激阴极生物膜上反硝化微生物的生长。
 Microbial fuel cell (MFC) generally has a slow start-up, and the starting mode has great influence on the performance of anode and cathode. In this paper, the effect of constant potential on the starting process of the system and the performance of the biological cathode was analyzed by applying constant potential to the anode. The results showed that the application of constant potentials accelerated the startup process of the system and improved the bio-cathode performance of EAM-MFC. Cathode potential and EAM-MFC output voltage increased by 84 ± 1.51 mV and 127 ± 2.09 mV respectively; the cathode COD, ammonia nitrogen and total nitrogen removal efficiency were increased by 32.77 %, 10.09 % and 21.42 % respectively; and it can stimulate the growth of denitrifying microorganism on the cathode membrane module.
第一作者简介:梁晶晶(1992-),女,河北省大名县人,硕士研究生,废水脱氮和微生物燃料电池, E-mail:619202660@qq.com

参考文献:
 [1] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation.[J]. Trends Biotechol, 2005, 23(6):291.
[2] Lovley D R. Microbial fuel cells: novel microbial physiologies and engineering approaches[J]. Curr Opin Biotech, 2006, 17(3):327.
[3] He Z, Largus&#x, T Angenent. Application of Bacterial Biocathodes in Microbial Fuel Cells[J]. Electroanal, 2006, 18(19-20):2009-2015.
[4] Liu G, Yates M D, Cheng S, et al. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments.[J]. Bioresource Technol, 2011, 102(15):7301-7306.
[5] Aelterman P, Rabaey K, Hai T P, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells.[J]. Environ Sci Technol 2006, 40(10):3388-3394.
[6] Wagner R C, Call D F, Logan B E. Optimal Set Anode Potentials Vary in Bioelectrochemical Systems[J]. Environ Sci & Technol, 2010, 44(16):6036-6041.
[7] Wang X, Feng Y, Ren N, et al. Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential[J]. Electrochim Acta, 2009, 54(3):1109-1114.
[8] Aelterman P, Freguia S, Keller J, et al. The anode potential regulates bacterial activity in microbial fuel cells[J]. Appl Microbiol & Biot, 2008, 78(3):409-418.
[9]李金洋, 陈涛, 胡艳清,等. 外加直流电场对微生物燃料电池阳极微生物的影响研究[J]. 可再生能源, 2012,30(4):93-96.
[10]丁为俊, 刘鹏, 刘伟凤,等. 循环伏安扫描对微生物燃料电池启动和产电性能的影响[J]. 化工学报, 2017, 68(3):1205-1210.
[11] Wu Y, Yang Q, Zeng Q, et al.Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode[J]. Chem Eng J, 2017, 316:315-322.
[12] Manz W, Amann R, Ludwig W, et al. Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions[J]. Syst & Appl Microbiol, 1992, 15(4):593-600.
[13] Pous N, Puig S, Balaguer M D, et al. Cathode potential and anode electron donor evaluation for a suitable treatment of nitrate-contaminated groundwater in bioelectrochemical systems[J]. Chem Eng J, 2015, 263(46):151-159.
[14]张永宜. 氨迁移对阴极反硝化双室微生物燃料电池产电性能及脱氮效率的影响实验[D]. 西安,长安大学, 2014.
[15] Ghosh S, Inganäs O. Conducting Polymer Hydrogels as 3D Electrodes: Applications for Supercapacitors[J]. Adv Mater, 1999, 11(14):1214-1218.
[16] Fei Z, Jian L, Zhen H. A new method for nutrients removal and recovery from wastewater using a bioelectrochemical system[J]. Bioresource Technol, 2014, 166(8):630-634.
[17] Anthonisen A C, Loehr R C, Prakasam T B, et al. Inhibition of nitrification by ammonia and nitrous acid.[J]. J  Water Pollut Control Fed, 1976, 48(5):835.
[18] Cho S, Fujii N, Lee T, et al. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor[J]. Bioresource Technol, 2011, 102(2):652-659.
[19] Amann R I, Binder B J, Olson R J, et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations.[J]. Appl & Environ Microb, 1990, 56(6):1919.
[20] Daims H, Brühl A, Amann R, et al. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set.[J]. Syst & Appl Microbiol, 1999, 22(3):434-444.
[21] Juretschko S, Timmermann G, Schmid M, et al. Combined Molecular and Conventional Analyses of Nitrifying Bacterium Diversity in Activated Sludge: Nitrosococcus mobilis, and Nitrospira -Like Bacteria as Dominant Populations[J]. Appl & Environ Microb, 1998, 64(8):3042-3051.
[22] Wagner M, Rath G, Amann R, et al. In situ, Identification of Ammonia-oxidizing Bacteria[J]. Syst & Appl Microbiol, 1995, 18(2):251-264.
[23] Zhang G, Zhang H, Ma Y, et al. Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation.[J]. Enzyme & Microb Tech, 2014, 60(60):56. 
[24] Thayanukul P, Zang K, Janhom T, et al. Concentration-dependent response of estrone-degrading bacterial community in activated sludge analyzed by microautoradiography-fluorescence in situ hybridization.[J]. Water Res, 2010, 44(17):4878.
[25] Beschkov V, Velizarov S, Agathos S N, et al. Bacterial denitrification of waste water stimulated by constant electric field[J]. Biochem Eng J, 2004, 17(2):141-145.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号