MOFs有机-无机杂化膜的制备及应用研究进展 |
作者:周玲玲1,牛照栋1,汤立红2,朱利平3 |
单位: 1昆明理工大学环境科学与工程学院,昆明 650500;2云南大学化学科学与工程学院,昆明 650500;3浙江大学高分子科学与工程学系,高分子合成与功能构造教育部重点实验室,杭州 310027 |
关键词: 金属有机骨架;有机-无机杂化;杂化膜 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2018,38(6):111-120 |
摘要: |
本文综述了基于金属有机骨架(metal-organic frameworks, MOFs)材料发展而来的有机-无机杂化膜的制备方法及其在气体分离、渗透汽化和纳滤等领域的应用。其中,气体分离主要介绍了杂化膜材料对H2,CO2和CH4等混合组分气体的分离性能;渗透汽化是基于溶剂脱水或者水相中有机物的去除等领域的应用展开的;纳滤则主要介绍了杂化膜材料对小分子物质的分离性能。同时,还阐述了杂化膜材料在以上应用中所起的作用。最后,总结了这种材料在研究过程中所面临的主要挑战,并对今后的发展做出了展望。 |
This paper reviews the preparation methods of organic-inorganic hybrid membranes based on metal-organic frameworks materials and their applications in gas separation, pervaporation and nanofiltration. Among them, gas separation mainly introduces the separation performance of hybrid membrane material to H2, CO2, CH4 and other mixed components. Pervaporation is based on the application of solvent dehydration or removal of organic matter in aqueous phase. Nanofiltration mainly introduces the separation property of the hybrid membrane material to small molecule matter. Meanwhile, the role of hybrid membrane material in the above application is also expounded. Finally, this paper sums up the main challenges faced by this material in the process of research, and make a prospect for the future development. |
基金项目: |
国家自然科学基金(51573159和51273176) |
作者简介: |
第一作者:周玲玲(1994—),女,重庆万州人,硕士研究生,研究方向为基于金属有机骨架膜材料在环境中的应用。E-mail:1181758880@qq.com 通讯作者:E-mail:luckyman@163.com。 |
参考文献: |
[1] QIN D, LIU Z, LIU Z, et al. Superior antifouling capability of hydrogel forward osmosis membrane for treating wastewaters with high concentration of organic foulants [J]. Environmental Science & Technology, 2018, 52(3): 1421-1428. [2] SMOLDERS K, FRANKEN A C M. Terminology for Membrane Distillation [J]. Desalination, 2017, 72(3): 249-262. [3] SHE Q, WANG R, FANE A G, et al. Membrane fouling in osmotically driven membrane processes: A review [J]. Journal of Membrane Science, 2016, 499: 201-233. [4] 徐又一, 徐志康. 高分子膜材料 [M]. 材料科学与工程出版中心, 2005. [5] QIU S, XUE M, ZHU G. Metal-organic framework membranes: from synthesis to separation application [J]. Chemical Society Reviews, 2014, 43(16): 6116-6140. [6] MARCHETTI P, JIMENEZ SOLOMON M F, SZEKELY G, et al. Molecular separation with organic solvent nanofiltration: a critical review [J]. Chemical Reviews, 2014, 114(21): 10735-10806. [7] 牛照栋, 关清卿, 陈秋玲, et al. 膦酸类金属-有机骨架材料对CO2的吸附性能研究进展 [J]. 化工进展, 2017, 36(5): 1782-1790. [8] YAGHI O M, DAVIS C E, GUANGMING LI A, et al. Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(II)−Benzenetricarboxylate Network [J]. Journal of the American Chemical Society, 1997, 119(12): 2861-2868. [9] YUAN S, FENG L, WANG K, et al. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications [J]. Advanced Materials, 2018: 1704303-1704303. [10] CAR A, STROPNIK C, PEINEMANN K V. Hybrid membrane materials with different metal–organic frameworks (MOFs) for gas separation [J]. Desalination, 2006, 200(1): 424-426. [11] HE Y R, TANG Y P, MA D, et al. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal [J]. Journal of Membrane Science, 2017, 541: 262-270. [12] DENG Y H, CHEN J T, CHANG C H, et al. A Drying‐Free, Water‐Based Process for Fabricating Mixed‐Matrix Membranes with Outstanding Pervaporation Performance [J]. Angewandte Chemie International Edition, 2016, 55(41): 12793-12796. [13] LIU X, DEMIR N K, WU Z, et al. Highly Water-Stable Zirconium Metal-Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination [J]. Journal of the American Chemical Society, 2015, 137(22): 6999-7002. [14] SUMIDA K, ROGOW D L, MASON J A, et al. Carbon dioxide capture in metal-organic frameworks [J]. Chemical Reviews, 2012, 112(2): 724-781. [15] PAN Y, LIU Y, ZENG G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system [J]. Chemical Communications, 2011, 47(7): 2071-2073. [16] WU D, GASSENSMITH J J, GOUV ªA D, et al. Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework [J]. Journal of the American Chemical Society, 2013, 135(18): 6790-6793. [17] CHEN Y, PROF J J. A Bio‐Metal–Organic Framework for Highly Selective CO2 Capture: A Molecular Simulation Study [J]. Chemsuschem, 2010, 3(8): 982-988. [18] GAGNON K J, PERRY H P, CLEARFIELD A. Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs [J]. Chemical Reviews, 2012, 112(2): 1034-1054. [19] HAO X R, WANG X L, SHAO K Z, et al. Remarkable solvent-size effects in constructing novel porous 1,3,5-benzenetricarboxylate metal–organic frameworks [J]. Crystengcomm, 2012, 14(17): 5596-5603. [20] BAGABAS A A, FRASCONI M, IEHL J, et al. γ-Cyclodextrin cuprate sandwich-type complexes [J]. Inorganic Chemistry, 2013, 52(6): 2854-2861. [21] SARAWADE P, TAN H, POLSHETTIWAR V. Shape- and Morphology-Controlled Sustainable Synthesis of Cu, Co, and In Metal Organic Frameworks with High CO2 Capture Capacity [J]. Acs Sustainable Chemistry & Engineering, 2013, 1(1): 66-74. [22] PICHON A, LAZUENGARAY A, JAMES S L. Solvent-free synthesis of a microporous metal–organic framework [J]. Crystengcomm, 2006, 8(3): 211-214. [23] SORRIBAS S, GORGOJO P, T LLEZ C, et al. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration [J]. Journal of the American Chemical Society, 2013, 135(40): 15201-15208. [24] SUN H, TANG B, WU P. Development of Hybrid Ultrafiltration Membranes with Improved Water Separation Properties Using Modified Superhydrophilic Metal-Organic Framework Nanoparticles [J]. Acs Applied Materials & Interfaces, 2017, 9(25): 21473-21484. [25] WANG L, FANG M, LIU J, et al. Layer-by-Layer Fabrication of High-Performance Polyamide/ZIF-8 Nanocomposite Membrane for Nanofiltration Applications [J]. Acs Applied Materials & Interfaces, 2015, 7(43): 24082-24093. [26] WANG N, LIU T, SHEN H, et al. Ceramic tubular MOF hybrid membrane fabricated through in situ layer‐by‐layer self‐assembly for nanofiltration [J]. Aiche Journal, 2016, 62(2): 538-546. [27] WU F, LIN L, LIU H, et al. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth [J]. Journal of Membrane Science, 2017, 544: 342-350. [28] LI X, LIU Y, WANG J, et al. Metal-organic frameworks based membranes for liquid separation [J]. Chemical Society Reviews, 2017, 46(23): 7124-7144. [29] LU A X, PLOSKONKA A M, TOVAR T M, et al. Direct Surface Growth Of UiO-66-NH2 on Polyacrylonitrile Nanofibers for Efficient Toxic Chemical Removal [J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14502-14506. [30] LAWSON S, HAJARI A, ROWNAGHI A A, et al. MOF immobilization on the surface of polymer-cordierite composite monoliths through in-situ crystal growth [J]. Separation & Purification Technology, 2017, 183: 173-180. [31] ZHU Y, GUPTA K M, LIU Q, et al. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes [J]. Desalination, 2016, 385: 75-82. [32] GHOLAMI F, ZINADINI S, ZINATIZADEH A A, et al. TMU-5 Metal-Organic frameworks (MOFs) as a novel nanofiller for flux increment and fouling mitigation in PES ultrafiltration membrane [J]. Separation & Purification Technology, 2017, 194: 272-280. [33] MA J, GUO X, YING Y, et al. Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance [J]. Chemical Engineering Journal, 2016, 313: 890-898. [34] ZHU J, QIN L, ULIANA A A, et al. Elevated Performance of Thin Film Nanocomposite Membranes Enabled by Modified Hydrophilic MOFs for Nanofiltration [J]. Acs Appl Mater Interfaces, 2017, 9(2): 1975-1986. [35] S NCHEZ-LA NEZ J, ZORNOZA B, FRIEBE S, et al. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test [J]. Journal of Membrane Science, 2016, 515: 45-53. [36] BASU S, CANO A. Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations [J]. Journal of Membrane Science, 2010, 362(1): 478-487. [37] YAO B J, DING L G, LI F, et al. Chemically Cross-Linked MOF Membrane Generated from Imidazolium-Based Ionic Liquid Decorated UiO-66 Type NMOF and its Application toward CO2 Separation and Conversion [J]. Acs Applied Materials & Interfaces, 2017, 9(44): 38919-38930. [38] LIN R, GE L, DIAO H, et al. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation [J]. Acs Appl Mater Interfaces, 2016, 8(46): 32041-32049. [39] LIU X, WANG C, WANG B, et al. Novel Organic‐Dehydration Membranes Prepared from Zirconium Metal‐Organic Frameworks [J]. Advanced Functional Materials, 2017, 27(3): 1604311-1604311. [40] ZHANG W, YING Y, MA J, et al. Mixed matrix membranes incorporated with polydopamine-coated metal-organic framework for dehydration of ethylene glycol by pervaporation [J]. Journal of Membrane Science, 2017, 527: 8-17. [41] BASU S, MAES M, CANO-ODENA A, et al. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks [J]. Journal of Membrane Science, 2009, 344(1): 190-198. [42] LI Y, WEE L H, MARTENS J A, et al. Interfacial synthesis of ZIF-8 membranes with improved nanofiltration performance [J]. Journal of Membrane Science, 2016, 523: 561-566. [43] LIU X L, LI Y S, ZHU G Q, et al. An Organophilic Pervaporation Membrane Derived from Metal-Organic Framework Nanoparticles for Efficient Recovery of Bio‐Alcohols [J]. Angewandte Chemie, 2011, 50(45): 10734-10734. [44] ZHANG R, JI S, WANG N, et al. Coordination-driven in?situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes [J]. Angewandte Chemie, 2014, 53(37): 9775-9779. [45] MA X H, YANG Z, YAO Z K, et al. A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes [J]. Journal of Membrane Science, 2016, 525: 269-276. [46] KITAO T, ZHANG Y, KITAGAWA S, et al. Hybridization of MOFs and polymers [J]. Chemical Society Reviews, 2017, 46(11): 3108-3133. [47] FAN H, SHI Q, YAN H, et al. Simultaneous Spray Self‐Assembly of Highly Loaded ZIF‐8-PDMS Nanohybrid Membranes Exhibiting Exceptionally High Biobutanol‐Permselective Pervaporation [J]. Angewandte Chemie, 2014, 126(22): 5684-5688. [48] WU T, SHEN L, LUEBBERS M, et al. Enhancing the stability of metal-organic frameworks in humid air by incorporating water repellent functional groups [J]. Chemical Communications, 2010, 46(33): 6120-6122. [49] LI H, SADIQ M M, SUZUKI K, et al. Magnetic Metal–Organic Frameworks for Efficient Carbon Dioxide Capture and Remote Trigger Release [J]. Advanced Materials, 2016, 28(9): 1839-1844. [50] NGUYEN J G, COHEN S M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification [J]. Journal of the American Chemical Society, 2010, 132(13): 4560-4561. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号