中性溶质环境下纳滤膜分离性能试验研究 |
作者:阳红1,李贇1,张会琴2,黄飚1,叶春松3 |
单位: 1.中船重工环境工程有限公司,武汉 430064;2.湖北工业大学,武汉 430068;3. 武汉大学动力与机械学院,武汉 430072 |
关键词: 中性溶质;纳滤膜;分离性能;活化能;反射系数 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2018,38(6):41-47 |
摘要: |
本论文对NF270与GE DK两种纳滤膜在异丙醇、葡萄糖和蔗糖三种溶质环境下进行了不同条件试验,以测试膜的基本参数;并采用Matlab软件对S-K模型进行了试验数据的回归分析,得出了纳滤膜的反射系数与溶质透过系数;利用SHP模型测算了纳滤膜的孔径及孔隙率与厚度的比值,同时研究了三种中性溶质在纳滤膜分离过程中的热力学参数。结果表明:试验数据与S-K模型模拟结果的偏差在0~2.0%之间,模拟值与试验数据吻合;NF 270纳滤膜的孔径在0.54~0.61 nm,GE DK纳滤膜的孔径在0.51~0.58 nm;异丙醇、葡萄糖和蔗糖在NF 270纳滤膜分离过程中的活化能分别为14.24 KJ/mol、31.86 KJ/mol和78.41 KJ/mol,异丙醇和葡萄糖在GE DK纳滤膜分离过程中的活化能分别为45.83 KJ/mol和46.09 KJ/mol。 |
In this paper, the basic parameters of NF270 and GE DK nanofiltration membrane were tested with glycerol, glucose and sucrose solution respectively in different conditions. The reflection coefficient and solute permeability coefficient of nanofiltration membrane were obtained by data regression of S-K model using Matlab. The pore size of the membrane and the ratio of porosity to thickness of the membrane were obtained using SHP model, meanwhile the thermodynamic parameters of three neutral solute during the nanofiltration were also studied. The results showed that the deviation between the test data and S-K model simulation data are between 0 % and 2.0 %,which indicated the consistency of test data with S-K model. The pore size of NF270 membrane is 0.54 nm to 0.61 nm, and that of GE DK membrane is 0.51 nm to 0.58 nm. The activation energies during the separation of glycerol, glucose and sucrose solution by NF270 membrane were 14.24 KJ/mol, 31.86 KJ/mol and 78.41 KJ/mol respectively, and the activation energies during the separation of glucose and sucrose solution by GE DK membrane were 45.83 KJ/mol and 46.09 KJ/mol respectively. |
基金项目: |
科技部、财政部国家中小企业创新基金 |
作者简介: |
第一作者:阳红(1980.08),男,安徽,高级工程师,研究生,博士,水污染治理,E-mail:yanghong813@126.com 通讯作者:叶春松,E-mail:yechunsong@126.com |
参考文献: |
[1] 王晓琳,丁宁.反渗透和纳滤技术与应用[M].北京:化学工业出版社,2005.28-29. [2] 时均,袁权,高从堵.膜技术手册[M].北京:化学工业出版社,2001.247-260. [3] 汪锰,王湛,李正雄.膜材料及其制各[M].北京:化学工业出版社,2003.119-122. [4] 高从堵,陈国华.海水淡化技术与工程手册[M].北京:化学工业出版社,2004.133-234. [5] Bruggen B V D, Everaert K, Wilms D, et al. Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation[J]. Journal of Membrane Science, 2001, 193(1): 239-248. [6] 阳红,叶春松,张会琴,等.纯水体系下纳滤膜分离过程热力学问题研究[J].膜科学与技术,2014,34(5):79-83. [7] Kedem O, Katchalsky A. Permeability of composite membranes: Part 1. Electric current, volume flow and flow of solute through membranes[J]. Transactions of the Faraday Society, 1963, 59(1): 1918-1930. [8] Katchalsky A, Curran P E. Nonequilibrium thermodynamics in biophysics[M]. US: Harvard University Press, 1965. 113-126. [9] Spiegler K S, Kedem O. Thermodynamics of hyperfiltration (reverse osmosis): Criteria for efficient membranes[J]. Desalination, 1966, 1: 311. [10] Haberman W L, Sayre R M. Motion of rigid and fluid spheres in stationary and moving liquids inside cylindrical tubes[R]. David Taylor Model Basin Report No. 1143. US: Department of the Navy, 1958. [11] Nakao S. Encyclopedia of Fluid Mechanics:Membrane Transport Phenomena and Ultrafiltration[M]. Houston: Gulf Publishing Company, 1993. 987. [12] Nakao S, Kinura S. Models of membrane transport phenomena and their applications for ultrafiltration data[J]. Journal of Chemical Engineering of Japan, 1982, 15: 200-205. [13] Wang X L, Tsuru T, Togoh M, et al. Evaluation of pore structure and electrical properties of nanofiltration membranes[J]. Journal of Chemical Engineering of Japan, 1995, 28 (2): 186-192. [14] Nakao S, Determination of pore size and pore sizedistribution[J]. Journal of Membrane Science, 1994, 96(3): 131-165. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号