巯基功能化分离膜的制备与应用 |
作者:刘兰芳,罗建泉,万印华,陈向荣,武元鹏 |
单位: 1. 油气藏地质及开发工程国家重点实验室,材料科学与工程学院,西南石油大学,四川成都 610500 2. 生化工程国家重点实验室,中国科学院过程工程研究所,北京 100190 |
关键词: 聚多巴胺;聚乙烯亚胺;L-半胱氨酸;功能化分离膜;展青霉素 |
DOI号: |
分类号: TQ316.6 |
出版年,卷(期):页码: 2019,39(3):14-21 |
摘要: |
?展青霉素是一种有毒的真菌次级代谢产物,给人及动物的健康造成了潜在的威胁。本文以尼龙膜为基膜,利用聚多巴胺涂层的超强粘附特性将带有氨基的聚乙烯亚胺接枝到膜表面,通过进一步的酰胺化反应制备得到巯基功能化分离膜,并利用巯基与展青霉素的特异性结合达到去除展青霉素的目的。系统研究了制膜参数,如基膜孔径、不同的PEI分子和膜表面巯基化反应条件等对膜形态结构和性能的影响。研究结果表明,通过多巴胺的仿生改性,能成功实现尼龙膜的巯基功能化。与基膜相比,巯基化分离膜的最大孔径减小,水通量明显下降,亲水性显著提高。在动态过滤实验中,随着温度的增加,膜的吸附率明显提高,60°C时对展青霉素的吸附率可达92.9%。 |
Patulin is a toxic fungal secondary metabolite, and it can cause a serious threat to human and animals’ healthy. In this paper, nylon membrane was used as the matrix material, polydopamine (PDA) coating was firstly deposited onto the surface of membrane. poly (ethylene imine) (PEI) was grafted onto the surface of membrane through the strong adhesion of PDA layer. Thiol-functionalized membrane was fabricated by thiolation modification for efficient removal of patulin. The effects of membrane preparation parameters, such as membrane pore size, PEI molecule and thiolation reaction conditions on membrane morphology and properties were studied. The results showed that thiol-functionalized membrane could be fabricated successfully by dopamine biomimetic modification. Compared with the pristine membrane, the maximum pore size of thiol-functionalized membrane was slightly decreased, water flux and contact angle were increased obviously. In the dynamic filtration tests, The adsorption efficiency of patulin was raised significantly with the temperature increasing. The adsorption efficiency of patulin was 92.9% at 60 °C. |
基金项目: |
国家重点研究发展计划(2017YFC1600906); 河北省衡水科技成果转化发展基金;中国工程院咨询项目(2017-XZ-08-01-03) |
作者简介: |
刘兰芳(1991-),女,河南周口人,硕士生,从事功能膜材料的制备与应用,E-mail: liulanfang421@163.com 通讯作者,陈向荣,E-mail:xrchen@ipe.ac.cn 武元鹏,E-mail:ypwu@swpu.edu.cn |
参考文献: |
[1] 李庆鹏, 靳婧, 崔文慧,等. 欧盟RASFF通报我国食品及饲料类违例信息及趋势分析(2002至2012年)[J]. 食品安全质量检测学报, 2014, 5(04): 1228-34. [2] Moake M M, Padilla-Zakour O I, Worobo R W. Comprehensive review of patulin control methods in foods[J]. Compr Rev Food Sci Food Saf, 2005, 4: 8-21. [3] Organization W H. Evaluation of Certain Food Additives and Contaminants: Eightieth Report of the Joint FAO/WHO Expert Committee on Food Additives[J]. World Health Organ Tech Rep Ser, 2016, 995: 1-114. [4] K.S.McKenzie, A.B.Sarr, K.Mayura,et al. Oxidative Degradation and Detoxification of Mycotoxins Using a Novel Source of Ozone[J]. Food Chem Toxicol, 1997, 35: 807-20. [5] Appell M, Jackson M A, Dombrink-Kurtzman M A. Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15[J]. J Hazard Mater, 2011, 187(1-3): 150-6. [6] Zhu R, Feussner K, Wu T,et al. Detoxification of mycotoxin patulin by the yeast Rhodosporidium paludigenum[J]. Food Chem, 2015, 179: 1-5. [7] Hatab S, Yue T, Mohamad O. Removal of patulin from apple juice using inactivated lactic acid bacteria[J]. J Appl Microbiol, 2012, 112(5): 892-9. [8] Assatarakul K, Churey J J, Manns D C,et al. Patulin reduction in apple juice from concentrate by UV radiation and comparison of kinetic degradation models between apple juice and apple cider[J]. J Food Prot, 2012, 75(4): 717-24. [9] Luo Y, Zhou Z, Yue T. Synthesis and characterization of nontoxic chitosan-coated Fe3O4 particles for patulin adsorption in a juice-pH simulation aqueous[J]. Food Chemistry, 2017, 221: 317-23. [10] 高振鹏, 岳田利, 袁亚宏,等. 苹果汁中展青霉素的超声波降解[J]. 农业机械学报, 2009, 40(09): 138-42. [11] J. BISSESSUR K P, AND B. ODHAV*. Reduction of Patulin during Apple Juice Clarication[J]. Journal of Food Protection, 2001: [12] Taydas J A V G E E. The effects of processing technology on the patulin content of juice[J]. ORIGINAL PAPER, 1998: [13] Gökmen V, Art?k N, Acar J,et al. Effects of various clarification treatments on patulin, phenolic compound and organic acid compositions of apple juice[J]. European Food Research and Technology, 2001, 213(3): 194-9. [14] Cao X, Luo J, Woodley J M,et al. Mussel-inspired co-deposition to enhance bisphenol A removal in a bifacial enzymatic membrane reactor[J]. Chem Eng J 2018, 336: 315-24. [15] Song Y, Ye G, Wu F,et al. Bioinspired Polydopamine (PDA) Chemistry Meets Ordered Mesoporous Carbons (OMCs): A Benign Surface Modification Strategy for Versatile Functionalization[J]. Chem Mater, 2016, 28(14): 5013-21. [16] Lv Y, Yang H-C, Liang H-Q,et al. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking[J]. Journal of Membrane Science, 2015, 476: 50-8. [17] Iqbal J, Shahnaz G, Dunnhaupt S,et al. Preactivated thiomers as mucoadhesive polymers for drug delivery[J]. Biomaterials, 2012, 33(5): 1528-35. [18] Constantia E. Kast A B-S. Thiolated polymers _ thiomers_ development and in vitro evaluation of chitosan-thioglycolic acid conjugates[J]. Biomaterials 2001: [19] Cai T, Li M, Neoh K-G,et al. Preparation of stimuli responsive polycaprolactone membranes of controllable porous morphology via combined atom transfer radical polymerization, ring-opening polymerization and thiol–yne click chemistry[J]. Journal of Materials Chemistry, 2012, 22(32): 16248. [20] Capozzi L C, Mehmood F M, Giagnorio M,et al. Ultrafiltration Membranes Functionalized with Polydopamine with Enhanced Contaminant Removal by Adsorption[J]. Macromolecular Materials and Engineering, 2017, 302(5): 1600481. [21] Liu B, Peng X, Chen W,et al. Adsorptive removal of patulin from aqueous solution using thiourea modified chitosan resin[J]. Int J Biol Macromol, 2015, 80: 520-8. [22] 王杰, 陈明, 李梅生,等. 聚乙烯醇/聚多巴胺-氮化碳渗透汽化复合膜的制备[J]. 膜科学与技术, 2018, 38(02): 37-44. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号