GO/PVDF共混超滤膜制备及抗生物污染性能研究 |
作者:马聪,黄敬云,王亮 |
单位: 天津工业大学分离膜与膜过程国家重点实验室/分离膜科学与技术国家级国际合作研究中心; 天津工业大学环境与化学工程学院 |
关键词: PVDF;GO;浸没沉淀法;超滤;抑菌性;抗生物污染性 |
DOI号: |
分类号: TQ028.8 |
出版年,卷(期):页码: 2018,38(4):64-69 |
摘要: |
将不同量GO加入PVDF铸膜液中,通过浸没沉淀法制备不同氧化石墨烯(GO)含量的PVDF共混超滤膜,考察了GO掺杂对PVDF超滤膜亲水性和膜孔道结构的影响,并以铜绿假单胞菌进行共混膜的抑菌性能和抗生物污染性能测试。研究结果表明,共混GO可以降低PVDF膜的接触角,提高其亲水性,增大支撑层指状孔比例,提高纯水通量。当GO添加量为0.5wt%时,PVDF膜接触角降低至64°,纯水通量提高64%。共混GO也大大提高了PVDF膜的抑菌性和抗生物污染性,在过滤铜绿假单胞菌溶液时,PVDF膜的不可逆阻力5.4×1012m-1,PVDF/0.5wt%GO复合膜的不可逆阻力为1.8×1012m-1,减小了66.7%。 |
In the study, the blend membranes modified by adding different concentration of GO were prepared through the phase inversion method. The tests of contact angle and SEM imagines were carried out to evaluate membranes surface hydrophilicity and structure of pore. Furthermore, the pseudomonas aeruginosa, as typical pollutants, were filtrated to research the antibacterial and anti-biofouling properties of membranes. The results indicated that contact angle of membranes blended GO/PVDF membrane could decreased the contact angle to improve the hydrophilicity and increase the finger-like pore, which lead to higher water flux. The contact angle decreased to 64° and the water flux increased by 64% under the additive concentration of 0.5wt%.The antibacterial and anti-biofouling properties of PVDF membranes were improved through adding GO. Compared with 5.4×1012m-1of PVDF/0wt%GO, the irreversible resistance of PVDF/0.5wt%GO membranes decreased to 1.8×1012m-1, showing the irreversible resistance of blend membranes decreased by 66.7%. |
基金项目: |
国家自然科学基金项目(51508383,51478314) |
作者简介: |
第一作者简介:马聪(1982-),男,辽宁沈阳,博士,研究方向是膜法水处理E-mail:macong_0805@126.com 通讯作者,E-mail:mashi7822@163.com |
参考文献: |
[1] Kang G D, Cao Y M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review[J]. J Membr Sci, 2014, 463(1): 145-165. [2] Zhao C, Xu X, Jie C, et al. Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system[J]. Desalination, 2014, 340(1): 59-66. [3] Chang X, Wang Z, Quan S, et al. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance[J]. Appl Surf Sci, 2014, 316(1): 537-548. [4] Safarpour M, Khataee A, Vatanpour V. Preparation of a Novel Polyvinylidene Fluoride (PVDF) Ultrafiltration Membrane Modified with Reduced Graphene Oxide/Titanium Dioxide (TiO2) Nanocomposite with Enhanced Hydrophilicity and Antifouling Properties[J]. Ind Eng Chem Res, 2014, 53(34): 13370-13382. [5] Perreault F, Tousley M E, Elimelech M. Thin-Film Composite Polyamide Membranes Functionalized with Biocidal Graphene Oxide Nanosheets[J]. Environ.sci.technol.lett, 2016, 1(1): 71–76. [6] Liu X H, Duan J, Yang J H, et al. Hydrophilicity, morphology and excellent adsorption ability of poly(vinylidene fluoride) membranes induced by graphene oxide and polyvinylpyrrolidone[J]. Colloid Surface A, 2015, 486:172-184. [7] Xu Z, Zhang J, Shan M, et al. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes[J]. J Membr Sci, 2014, 458(10): 1-13. [8] Wu T, Zhou B, Zhu T, et al. Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation[J]. Rsc Adv, 2015, 5(11): 7880-7889. [9] Zhang J, Xu Z, Mai W, et al. Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials[J]. J Mater Chem A, 2013, 1(9): 3101-3111. [10] 王庐岩. 聚偏氟乙烯共混相容性及成膜机理研究[D]. 北京工业大学, 2002. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号