构建高性能复合正渗透膜及其在果汁浓缩中的应用 |
作者:安晓婵1, 3,张翔宇1,周宗尧1, 3, 胡云霞2 |
单位: 1. 中国科学院烟台海岸带研究所 中国科学院海岸带环境过程与生态修复重点实验室 山东烟台 264003; 2. 天津工业大学 分离膜与膜过程国家重点实验室,天津 300387;3. 中国科学院大学 北京100049 |
关键词: 正渗透;高性能;碳纳米管;薄层复合膜;果汁浓缩 |
DOI号: |
分类号: TQ028.8; TB43 |
出版年,卷(期):页码: 2018,38(4):99-106 |
摘要: |
传统果汁浓缩技术存在营养损失大和口感差,以及设备管理成本高等缺点。近年来,正渗透技术因其可以弥补传统浓缩技术的缺陷,受到越来越多的关注。但浓缩过程中由于缺乏高性能的正渗透膜,大大限制了其应用推广。本文通过在聚砜支撑层背面构建碳纳米管(CNT)抗污染层,在支撑层表面界面聚合制备高性能聚酰胺复合正渗透膜,并应用于果汁浓缩。通过扫描电子显微镜的表征、支撑层盐扩散系数及TFC膜的水通量和反向盐通量的测定等方法考察了CNT层对TFC膜结构及性能的影响。随后考察在实际果汁浓缩时TFC膜的通量衰减和恢复情况。结果表明,当抽滤CNT分散液的体积为20 mL时,TFC膜性能最佳,浓缩果汁时膜通量显著优于未含CNT的对照膜;运行4200 min进行果汁浓缩时,膜通量衰减率和恢复率均明显优于对照膜。 |
The conventional technology for juice concentration often leads to severe nutrition loss and high costs. Recently, forward osmosis (FO) shows great potential for juice concentration. However, the lack of efficient FO membranes is one of the critical challenges for the development of FO technology. Thus, to fabricate high performance thin film composite (TFC) forward osmosis membrane, we deposited carbon nanotubes on the back surface of PSF support to shrink the surface pores and synthesized the polyamide on top surface of the PSF support. The impacts of CNT deposition on the performance of TFC polyamide membranes were investigated, and our results found that the TFC membrane with CNT (TFC-CNT20) achieved the best performance. After 4200 min FO operation for juice concentration, the TFC membrane with CNT exhibited a lower flux decline percentage and a higher recovery percentage, compare with control membranes without the CNT. |
基金项目: |
国家自然科学基金委(No. 21476249, No. 51708408), 烟台市重大研发计划 (No. 2015ZH063)和天津市重大平台项目资助,山东省重点研发计划(2016ZDJS04B03)。 |
作者简介: |
第一作者简介:安晓婵(1987-),女,河北省邢台市人,博士生,研究方向为新型正渗透膜,E-mail: anxiaochan@163.com 通讯作者,E-mail: yunxiahu@yic.ac.cn |
参考文献: |
[1] GIRARD B, FUKUMOTO L R. Membrane processing of fruit juices and beverages: a review [J]. Crit Rev Biotechnol, 2000, 20(2): 109-75. [2] JIAO B, CASSANO A, DRIOLI E. Recent advances on membrane processes for the concentration of fruit juices: a review [J]. Journal of Food Engineering, 2004, 63(3): 303-24. [3] NINDO C I, POWERS J R, TANG J. Influence of Refractance Window evaporation on quality of juices from small fruits [J]. LWT - Food Science and Technology, 2007, 40(6): 1000-7. [4] S NCHEZ J, RUIZ Y, RAVENT S M, et al. Progressive freeze concentration of orange juice in a pilot plant falling film [J]. Innovative Food Science & Emerging Technologies, 2010, 11(4): 644-51. [5] RODRIGUES R B, MENEZES H C, CABRAL L M C, et al. Evaluation of reverse osmosis and osmotic evaporation to concentrate camu–camu juice (Myrciaria dubia) [J]. Journal of Food Engineering, 2004, 63(1): 97-102. [6] SHEU M J, WILEY R C. Preconcentration of Apple Juice by Reverse Osmosis [J]. Journal of Food Science, 1983, 48(2): 422-9. [7] ZHU Z, GUAN Q, KOUBAA M, et al. Preparation of Highly Clarified Anthocyanin-Enriched Purple Sweet Potato Juices by Membrane Filtration and Optimization of Their Sensorial Properties [J]. Journal of Food Processing and Preservation, 2017, 41(3): e12929. [8] 李丽丽, 王铎. 醋酸纤维素正渗透膜的制备及其性能研究 [D]; 中国海洋大学, 2012. [9] 高从堦, 郑根江, 汪锰, et al. 正渗透-水纯化和脱盐的新途径 [J]. 水处理技术, 2008, 34(2): 1-4. [10] HERRON J R, BEAUDRY, E.G., JOCHUMS, C.E., MEDINA, L.E.,. Osmotic concentration apparatus and method for direct osmosis concentration of fruit juices [J]. US Patent, 1994, 5281430( [11] NAYAK C A, VALLURI S S, RASTOGI N K. Effect of high or low molecular weight of components of feed on transmembrane flux during forward osmosis [J]. Journal of Food Engineering, 2011, 106(1): 48-52. [12] LING T-S C S Z K Y W J S M M. Forward osmosis processes_ Yesterday, today and tomorrow [J]. Desalination 2012, 287(78-81. [13] ILAME S A, V. SINGH S. Application of Membrane Separation in Fruit and Vegetable Juice Processing: A Review [J]. Critical Reviews in Food Science and Nutrition, 2015, 55(7): 964-87. [14] DUONG P H, CHUNG T S, WEI S, et al. Highly permeable double-skinned forward osmosis membranes for anti-fouling in the emulsified oil-water separation process [J]. Environ Sci Technol, 2014, 48(8): 4537-45. [15] HU M, ZHENG S, MI B. Organic Fouling of Graphene Oxide Membranes and Its Implications for Membrane Fouling Control in Engineered Osmosis [J]. Environ Sci Technol, 2016, 50(2): 685-93. [16] TIRAFERRI A, YIP N Y, STRAUB A P, et al. A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes [J]. J Membr Sci, 2013, 444(523-38. [17] PYLYPIW H M, GRETHER M T. Rapid high-performance liquid chromatography method for the analysis of sodium benzoate and potassium sorbate in foods [J]. Journal of Chromatography A, 2000, 883(1-2): 299-304. [18] LONG Q, QI G, WANG Y. Evaluation of Renewable Gluconate Salts as Draw Solutes in Forward Osmosis Process [J]. ACS Sustain Chem Eng, 2016, 4(1): 85-93. [19] DUONG P H, CHISCA S, HONG P Y, et al. Hydroxyl functionalized polytriazole-co-polyoxadiazole as substrates for forward osmosis membranes [J]. ACS Appl Mater Interfaces, 2015, 7(7): 3960-73. [20] YIP N Y, TIRAFERRI A, PHILLIP W A, et al. High performance thin-film composite forward osmosis membrane [J]. Environ Sci Technol, 2010, 44(10): 3812-8. [21] CATH T, CHILDRESS A, ELIMELECH M. Forward osmosis: Principles, applications, and recent developments [J]. J Membr Sci, 2006, 281(1-2): 70-87. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号