顺流串联逆电渗析电堆数对能量转换效率的影响研究 |
作者:何其琛,徐士鸣,吴曦,吴德兵,胡军勇,张凯,金东旭,王平 |
单位: (大连理工大学能源与动力学院 海洋能源利用与节能教育部重点实验室,辽宁 大连 116024) |
关键词: 逆电渗析;串联电堆;顺流;能量转换效率;输出电压 |
DOI号: |
分类号: TQ152 |
出版年,卷(期):页码: 2018,38(5):23-30 |
摘要: |
逆电渗析电堆(RED Stack)可以将自然界中广泛存在或通过人工方法制取的盐差能转换为电能。为了有效提高RED电堆的能量转换效率和输出电压,通过建立RED电堆能量转换模型,对采用溶液顺流流程的多个RED电堆(多电极)串联的RED发电系统进行理论研究,探讨RED流道总长,溶液流速以及RED电堆数对系统能量转换效率及输出特性的影响。计算结果表明:在设定参数下,降低溶液流速,增加流道总长和电堆数均能提升RED系统的发电效率。但随流道总长和电堆数继续增加,效率提升的趋势减缓。串联电堆在增加输出电压和功率密度的同时其总内阻随之增加,导致系统输出电流变化对输出电压和电堆功率密度的影响增大。 |
Reverse Electrodialysis stack (RED stack) can convert salinity gradient energy which exists widely in nature or can be made by artificial methods into electricity. To effectively enhance the energy conversion efficiency and output voltage, the model for RED stack energy conversion was developed, which can be used to research on the series multiple stacks (multiple electrodes) in a co-flow RED system. The effects of total flow passageway length of RED, solution flow velocity and series RED stack numbers on energy conversion efficiency and output characteristics of RED system were discussed. Simulation results show that under the given operation parameters, reducing solution flow velocity and increasing total flow passageway length and RED stack numbers can improve power generation efficiency of the system. But the growth rate will be down with flow passageway length and RED stack numbers increasing continuously. The increase of series RED stack numbers not only enhances the output voltage and power density of the system, but also improves the internal resistance, which leads to a significant influence of system output current on output voltage and power density. |
基金项目: |
国家自然科学基金项目“基于溶液浓度变化的‘热-电’转换循环特性基础研究”(51776029);国家自然科学基金青年科学基金项目“逆电渗析法热-电转换系统匹配工质对的溶解与电导特性研究”(51606024) |
作者简介: |
第一作者简介:何其琛(1992-),男,山西省原平人,硕士研究生,研究方向为逆电渗析发电数值模拟,Email: hqc420711536@mail.dlut.edu.cn *通讯作者:徐士鸣(1957-),男,博士,教授,博士生导师,Email: xsming@dlut.edu.cn |
参考文献: |
[1] Post J W, Veerman J, Hamelers H V M, et al. Salinity-gradient power: Evaluation of pressure retarded osmosis and reverse electrodialysis[J]. Journal of Membrane Science, 2007, 288: 218-230. [2] Wick G L, Schmitt W R. Prospects for renewable energy from the sea[J]. Marine Technology Society Journal, 1977, 11: 16-21. [3] 刘伯羽, 李少红, 王刚. 盐差能发电技术的研究进展[J]. 可再生能源, 2010, 28(2): 141-144. [4] 徐士鸣, 吴曦, 吴德兵, 等. 从吸收制冷到逆向电渗析发电——溶液浓差能应用新技术[J]. 制冷技术, 2017, 37(2): 8-13. [5] Long R, Li B D, Liu Z C, et al. Hybrid membrane distillation-based reverse electrodialysis electricity generation system to harvest low-grade thermal energy[J]. Journal of Membrane Science, 2017, 525: 107-115. [6] Pattle R E. Production of electric power by mixing fresh and salt water in the hydroelectric pile[J]. Nature, 1954, 174(4431): 660. [7] Kim H K, Lee M S, Lee S Y, et al. High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high open-area spacer[J]. Journal of Materials Chemistry A, 2015, 3: 16302-16306. [8] Güler E, Baak W V, Saakes M, et al. Monovalent-ion-selective membranes for reverse electrodialysis[J]. Journal of Membrane Science, 2014, 455: 254-270. [9] 徐士鸣,吴曦,冷强. 一种利用低品位热降解高浓有机废水方法[P]. 中国, 发明专利, 201711384061.2. 2017-12-20. [10] 陈霞,蒋晨啸,汪耀明,等. 反向电渗析在新能源及环境保护应用中的研究进展[J]. 化工学报, 2018, 69(1): 188-202. [119] Vermaas D A, Saakes M, Nijmeijer K. Doubled power density from salinity gradients at reduced intermembrane distance[J]. Environmental Science & Technology, 2011, 45: 7089-7095. [120] Cipollina A, Micale G. Sustainable Energy from Salinity Gradients[M]. Cambridge: Woodhead Publishing, 2016: 80. [131] Post J W, Hamelers H V M, Buisman C J N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J]. Environmental Science & Technology, 2008, 42: 5785–5790. [142] Yip N Y, Vermaas D A, Nijmeijer K, et al. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients[J]. Environmental Science & Technology, 2014, 48: 4925-4936. [153] Veerman J, Saakes M, Metz S J, et al. Electrical power from sea and river water by reverse electrodialysis: A first step from the laboratory to a real power plant[J]. Environmental Science & Technology, 2010, 44: 9207-9212. [164] Vermaas D A, Veerman J, Yip N Y, et al. High efficiency in energy generation from salinity gradients with reverse electrodialysis[J]. ACS Sustainable Chemistry & Engineering, 2013, 1: 1295-1302. [1175] Kim K S, Ryoo W, Chun M S, et al. Simulation of enhanced power generation by reverse electrodialysis stack module in serial configuration[J]. Desalination, 2011, 318: 79-87. [186] 徐士鸣, 吴德兵, 吴 曦, 等. 氯化锂溶液为工质的溶液浓差发电实验研究[J]. 大连理工大学学报, 2017, 57(4): 337-344. [197] Veerman J, Saakes M, Metz S J, et al. Reverse electrodialysis: A validated process model for design and optimization[J]. Chemical Engineering Journal, 2011, 166: 256-268. [2018] Tedecso M, Cipollina A, Tamburini A, et al. A simulation tool for analysis and design of reverse electrodialysis using concentrated brines[J]. Chemical Engineering Research and Design, 2015, 93: 441-456. [2119] Veerman J, Jong R M, Saakes M, et al. Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density[J]. Journal of Membrane Science, 2009, 343: 7-15. [220] Veerman J, Saakes M, Metz S J, et al. Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water[J]. Journal of Membrane Science, 2009, 327: 136-144. [231] Vermaas D A, Güler E, Saakes M, et al. Theoretical power density from salinity gradients using reverse electrodialysis[J]. Energy Procedia, 2012, 20: 170 – 184. [242] Yip N Y, Elimelech M. Thermodynamic and energy efficiency analysis of power generate on from natural salinity gradients by pressure retarded osmosis[J]. Environmental Science & Technology, 2012, 46: 5230-5239. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号