方钠石分子筛膜的氢/氦及氢/氮分离性能研究 |
作者:高 洋,陈长安,王晓方,宋雅琪,郭亚昆,饶咏初,冯兴文 |
单位: (表面物理与化学重点实验室,四川绵阳 621908) |
关键词: 方钠石(SOD);分子筛膜;氢气;渗透率;分离因子 |
DOI号: |
分类号: 0611 |
出版年,卷(期):页码: 2018,38(5):31-37 |
摘要: |
文研究了温度范围25 ~ 150 oC下,单组份气体H2、He、N2在厚度为20μm方钠石(sodalite, SOD)分子筛膜上的渗透性能。实验结果表明,在25 oC和40 kPa的条件下,SOD分子筛膜对H2、He、N2的渗透率分别为4.749×10-6,2.190×10-6和1.128×10-6 mol·m-2·s-1·Pa-1,从而计算出膜对单组份H2/He和H2/N2气体的理想分离系数分别为2.17和4.21,均高于努森扩散值。在25 ~ 150 oC的温度区间内,随着温度的升高,膜对H2、He和N2的渗透速率增加,且H2/He和H2/N2的理想分离因子增大,分别从2.17增大到3.18,从4.21增大到5.46。 |
In this paper, the permeation properties of H2, He and N2 in the supported sodalite(SOD) zeolite membrane at 25 - 150 °C were studied. The results showed that at 25 ℃ and 40 kPa, the single component permeances of H2, He and N2 gases are 4.749×10-6, 2.190×10-6 and 1.128×10-6 mol·m-2·s-1·Pa-1, and the ideal separation factors for H2/He and H2/N2 are 2.17 and 4.21, which are higher than the corresponding values of Knudsen diffusion. In the temperature range of 25 - 150 oC, the ideal separation factors for H2/He and H2/N2 were found to increase slightly with increasing temperature (from 2.17 to 3.18, and from 4.21 to 5.46), respectively. |
基金项目: |
国家磁约束核聚变能发展研究专项(2015GB109004); 国家自然科学基金(21401174) |
作者简介: |
第一作者简介:高洋:1991年生,男,硕士,主要研究方向为分子筛膜的合成与性能研究,E-mail: GY_9112@163.com。*通讯作者,E-mail:王晓方,wangxf_spc@163.com;陈长安,chenchangan@caep.cn |
参考文献: |
[1] 顾忠茂. 氢能利用与核能制氢研究开发综述 [J]. 原子能科学技术, 2006, 40(1): 30. [2] 陈长聘, 氢能未来与储氢金属材料技术 [J]. 氯碱工业 2003, 1-3. [3] Cabal H, Lechón Y, Bustreo C et al , Fusion power in a future low carbon global electricity system [J]. Energy Strategy Reviews, 2017, 15: 1. [4] 罗德礼, 陈长安, 中国ITER氦冷固态实验包层模块氚工艺系统设计核聚变与等离子体物理, 2006, 26: 217. [5] Fukada S, Fuchinoue K, Nishikawa M, Isotope separation factor and isotopic exchange rate between hydrogen and deuterium of palladium [J]. Journal of Nuclear Materials, 1995, 226: 311. [6] Fukada S, Fujiwara H, Samsun-Baharin M, Pressure–temperature-swing process using three absorption beds for hydrogen isotope separation [J]. Separation Science and Technology, 2002, 37: 3065. [7] Kotoh K, Kudo K, Multi-component adsorption behavior of hydrogen isotopes on Zeolite 5A and 13X at 77.4 K [J]. Fusion Science and Technology, 2005, 48: 148. [8] Prabhu A K, Oyama S T, Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases [J]. Journal of Membrane Science, 2000, 176: 233. [9] Baker R W, Future directions of membrane gas separation technology [J]. Ind. Eng. Chem. Res, 2002, 41: 1393. [10] Strathmann H, Membrane Separation Processes, 3. Membrane Preparation and Membrane Module Constructions. In Ullmann's Encyclopedia of Industrial Chemistry [M]. Wiley-VCH Verlag GmbH & Co. KgaA, 2000. [11] Ockwig N W, Nenoff T M, Membranes for hydrogen separation [J]. Chemical Reviews, 2007, 107: 4078. [12] Li P Y, Wang Z, Qiao Z H et al, Recent developments in membranes for efficient hydrogen purification [J]. Journal of Membrane Science, 2015, 495: 130. [13] Caro J, Noack M, Kölsch P, et al, Zeolite membranes - state of their development and perspective [J]. Microporous and Mesoporous Materials, 2000, 38: 3. [14] Caro J, Noack M, Zeolite membranes – Recent developments and progress [J]. Microporous and Mesoporous Materials, 2008, 115: 215. [15] Rezai S A S, Lindmark J, Andersson C, et al, Water/hydrogen/hexane multicomponent selectivity of thin MFI membranes with different Si/Al ratios [J]. Microporous and Mesoporous Materials, 2008, 108: 136. [16] Simplício M, Afonso M D, Borisevich O, et al, Permeation of single gases and binary mixtures of hydrogen and helium through a MFI zeolite hollow fibres membrane for application in nuclear fusion [J]. Separation and Purification Technology, 2014, 122: 199. [17] Breck D W, Zeolite molecular sieves: structure, chemistry, and use [M]. John Wiley & Sons, New York, NY, 1974. [18] Khajavi S, Kapteijn F, Jansen J C, Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation [J]. Journal of Membrane Science, 2007, 299: 63. [19] Wang N, Liu Y, Huang A, Caro J, Hydrophilic SOD and LTA membranes for membrane-supported methanol, dimethylether and dimethylcarbonate synthesis. Microporous and Mesoporous Materials 2015, 207, 33-38. [20] Xu X, Bao Y, Song C, et al, Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane [J]. Microporous and Mesoporous Materials, 2004, 75: 173. [21] Nabavi M S, Mohammadi T, Kazemimoghadam M, Hydrothermal synthesis of hydroxy sodalite zeolite membrane: Separation of H2/CH4 [J]. Ceramics International, 2014, 40: 5889. [22] Kalantari N, Vaezi M J, Yadollahi M, et al, Synthesis of nanostructure hydroxy sodalite composite membranes via hydrothermal method: support surface modification and synthesis method effects [J]. Asia-Pacific Journal of Chemical Engineering, 2015, 10: 45. [23] 夏长久, 彭欣欣, 林民,等.“溶解-再结晶”技术在提升分子筛材料催化性能方面的应用[J]. 石油学报(石油加工), 2016, 32(4):830-840. [24] Kosinov N, Gascon J, Kapteijn F, er al , Recent developments in zeolite membranes for gas separation [J]. Journal of Membrane Science, 2016, 499: 65. [25] Xiao J, Wei J, Diffusion mechanism of hydrocarbons in zeolites—I. Theory [J]. Chemical Engineering Science, 1992, 47: 1123. [26] 程文萍. 微孔硅铝酸盐—沸石分子筛在CO/N2吸附分离中应用的研究[D]. 太原理工大学,2003. [27] Sang K W, Single Gas Permeation through a Modified Silicalite-1 Membrane [J]. ASEAN J. Chem. Eng. 2010, 10: 35. [28] Nitodas S F, Favvas E P, Romanos G E, et al, Development and characterization of silica-based membranes for hydrogen separation [J]. Journal of Porous Materials, 2008, 15: 551. [29] Lito P F, Zhou C F, Santiago A S,et al , Modelling gas permeation through new microporous titanosilicate AM-3 membranes [J]. Chemical Engineering Journal, 2010, 165: 395. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号