DVB改性超疏水纤维膜及其在膜蒸馏中的应用 |
作者:从硕,董建华,郭飞 |
单位: 大连理工大学能源与动力学院,海洋能源利用与节能教育部重点实验室,辽宁 大连 116024 |
关键词: 聚丙烯腈;静电纺丝;疏水改性;膜蒸馏;脱盐 |
DOI号: |
分类号: TQ 028.8;TQ342+.31 |
出版年,卷(期):页码: 2018,38(5):104-112 |
摘要: |
本文以安全无毒的低能量单体二乙烯基苯(Divinylbenzene,DVB)取代1H,1H,2H,2H-全氟癸基丙烯酸酯(1H,1H,2H,2H-Perfluorodecyl acrylate,PFDA),作为引发式化学气相沉积的前驱材料,成功将通过静电纺丝技术制备的聚丙烯腈(PAN)纤维膜由亲水膜改性为超疏水膜,并应用于膜蒸馏中。采用扫描电镜、水接触角测量仪、LEP测试装置、原子力显微镜等对改性前后纤维膜的表面形貌、润湿性、水力穿透压、厚度变化等参数进行表征。将改性后的纤维直径在0.23~0.81 μm的PAN纤维膜用于气隙式膜蒸馏实验。结果表明,静电纺丝纤维膜呈无纺结构,疏水化改性后纤维膜形貌无明显变化,料液侧与渗透侧温差为13~59 ℃时,渗透通量为1.5~22 kg/m2/h,脱盐率均在99.9 %以上。随着纤维丝直径减小,孔隙率、水接触角,以及水力穿透压均有增加。纤维直径对膜蒸馏过程中的渗透通量、脱盐率和水力穿透压起到重要作用。 |
Divinylbenzene (DVB) is a kind of low-energy monomer which is also environmental friendly. In order to replace 1H, 1H, 2H, 2H-perfluorodecyl acrylate (PFDA), DVB was used as the precursor for initiated chemical vapor deposition (iCVD). In this study, Polyacrylonitrile (PAN) fibrous membranes were prepared by electrospinning. The membranes were transferred from hydrophilic to superhydrophobic by iCVD, and successfully applied in membrane distillation. The morphology, wettability, liquid entry pressure (LEP), and thickness of the membranes were characterized by scanning electron microscope, water contact angle measurement instrument, LEP test equipment, and atomic force microscopy (AFM). A set of iCVD treated PAN fibrous membranes with the fiber diameters ranging from 0.23 μm to 0.81 μm were tested for membrane distillation using a lab-scale air gap membrane distillation unit. The electrospun fibers were found to be randomly oriented. The morphology of fibrous membranes after surface modification showed no obvious change. The permeate flux was 1.5~22 kg/m2/h when the temperature difference between the feed solution and condensing plate was 13~59 ℃. The salt rejection ratios were all larger than 99.9 %. With decreasing the fiber diameter, the liquid entry pressure, the water contact angle, and the porosity were observed to increase, from 49 kPa to 128 kPa, from 84 % to 89.5 %, from 137 ° to 147 °, respectively. The results show that the fiber diameter plays an important role in the MD performance in terms of permeate flux, salt rejection ratio, and liquid entry pressure. |
基金项目: |
中央高校基本科研业务费专项基金(DUT17JC05) |
作者简介: |
第一作者简介:从硕(1994—),男,安徽宿州人,博士研究生,研究方向:薄膜蒸馏。 通讯作者:郭飞(1983—),男,教授,博士生导师。研究方向:先进膜材料,碳素纳米材料。 E-mail: feiguo@dlut.edu.cn. |
参考文献: |
[1]. Drioli, E., A. Ali and F. Macedonio. Membrane distillation: Recent developments and perspectives[J]. Desalination, 2015. 356: 56-84. [2]. Martinetti, C.R., A.E. Childress and T.Y. Cath. High recovery of concentrated RO brines using forward osmosis and membrane distillation[J]. Journal of Membrane Science, 2009. 331(1): 31-39. [3]. Schneider, K. and T.J. Van Gassel. Membrandestillation[J]. Chemie Ingenieur Technik, 1984. 56(7): 514-521. [4]. Wang, P. and T.S. Chung. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring[J]. Journal of Membrane Science, 2015. 474(2): 39-56. [5]. 申龙,高瑞昶. 膜蒸馏技术最新研究应用进展[J]. 化工进展, 2014. 33(2): 289-297. [6]. 王许云, 张林,陈欢林. 膜蒸馏技术最新研究现状及进展[J]. 化工进展, 2007. 26(2): 168-172. [7]. Lawson, K.W. and D.R. Lloyd. Membrane distillation: Review[J]. Journal of Membrane Science, 1997. 124(1): 1-25. [8]. Cai, J. and F. Guo. Study of mass transfer coefficient in membrane desalination[J]. Desalination, 2017. 407: 46-51. [9]. Cath, T.Y., V.D. Adams and A.E. Childress. Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement[J]. Journal of Membrane Science, 2004. 228(1): 5-16. [10]. Drioli, E., Y. Wu and V. Calabro. Membrane distillation in the treatment of aqueous solutions ☆[J]. Journal of Membrane Science, 1987. 33(3): 277-284. [11]. Gryta, M.. The concentration of geothermal brines with iodine content by membrane distillation[J]. Desalination, 2013. 325(20): 16-24. [12]. Feng, C., et al. Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane[J]. Journal of Membrane Science, 2008. 311(1-2): 1-6. [13]. Francis, L., et al. PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation[J]. Journal of Materials Science, 2014. 49(5): 2045-2053. [14]. Liao, Y., et al. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation[J]. Journal of Membrane Science, 2013. 425-426(1): 30-39. [15]. Shaulsky, E., et al. Post-fabrication modification of electrospun nanofiber mats with polymer coating for membrane distillation applications[J]. Journal of Membrane Science, 2017. 530: 158-165. [16]. Lalia, B.S., et al., Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation[J]. Journal of Membrane Science, 2013. 428(2): 104-115. [17]. 王晓琴等. 膜蒸馏技术在水处理中的应用[J]. 工业水处理, 2008. 28(12): 18-21. [18]. Subramanian, S. and R. Seeram. New directions in nanofiltration applications - Are nanofibers the right materials as membranes in desalination? [J]. Desalination, 2013. 308: 198-208. [19]. Ahmed, F.E., B.S. Lalia and R. Hashaikeh. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination, 2015. 356: 15-30. [20]. Guo, F., et al. Desalination by Membrane Distillation using Electrospun Polyamide Fiber Membranes with Surface Fluorination by Chemical Vapor Deposition. Acs Applied Materials & Interfaces, 2015. 7(15): 8225-8232. [21]. Choong, L.T., Z. Khan and G.C. Rutledge. Permeability of electrospun fiber mats under hydraulic flow[J]. Journal of Membrane Science, 2014. 451(1): 111-116. [22]. 覃小红等. 静电纺丝聚丙烯腈纳米纤维工艺参数与纤维直径关系的研究[J]. 东华大学学报(自然科学版), 2005. 31(6): 16-22. [23]. Yang, M.C. and T.Y. Liu. The permeation performance of polyacrylonitrile/polyvinylidine fluoride blend membranes[J]. Journal of Membrane Science, 2003. 226(1-2): 119-130. [24]. K.K. Gleason. CVD Polymers: Fabrication of Organic Surfaces and Devices. [M]. Wiley-VCH, 2015: 1-11. [25]. Ma, M., et al. Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition[J]. Macromolecules, 2005. 38(23): 9742-9748. [26]. Greenlee, L.F., et al. Reverse osmosis desalination: water sources, technology, and today's challenges[J]. Water Research, 2009. 43(9): 2317-48. [27]. Warsinger, D.M., et al. Combining air recharging and membrane superhydrophobicity for fouling prevention in membrane distillation[J]. Journal of Membrane Science, 2016. 505: 241-252. [28]. Buck, R.C., et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins[J]. Integrated Environmental Assessment & Management, 2011. 7(4): 513-541. [29]. Petruczok, C.D., R. Yang and K.K. Gleason. Controllable Cross-Linking of Vapor-Deposited Polymer Thin Films and Impact on Material Properties[J]. Macromolecules, 2013. 46(5): 1832-1840. [30]. Cai, J., et al. Membrane desalination using surface fluorination treated electrospun polyacrylonitrile membranes with nonwoven structure and quasi-parallel fibrous structure[J]. Desalination, 2018. 429: 70-75. [31]. Cassie, A.B.D. and S. Baxter. Wettability of porous surfaces[J]. Trans Faraday Soc, 1944. 40(1): 546-551. [32]. Vargaftik, N.B., B.N. Volkov and L.D. Voljak. International Tables of the Surface Tension of Water[J]. Journal of Physical & Chemical Reference Data, 1983. 12(3): 817-820. [33]. Alklaibi, A.M. and N. Lior. Transport analysis of air-gap membrane distillation[J]. Journal of Membrane Science, 2005. 255(1-2): 239-253. [34]. Darcy, H. Les Fontaines Publiques de la Ville de Dijon. Dalmont[M], Paris, 1856. [35]. Yang, C., et al. Effective evaporation of CF4 plasma modified PVDF membranes in direct contact membrane distillation[J]. Journal of Membrane Science, 2015. 482(1): 25-32 |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号