聚乳酸分离膜的制备、改性及其应用进展 |
作者:王宇飞1,王保玉1, 2 ,周秀苗1,李玉玲1,李靖靖1,刘从军1,王少鹏1,窦浩祯2,张娜2 |
单位: 1.郑州工程技术学院 化工食品学院,郑州454044; 2.天津大学 化工学院,天津300072 |
关键词: 聚乳酸;分离膜;制备方法;亲水改性 |
DOI号: |
分类号: TQ323.9 |
出版年,卷(期):页码: 2018,38(5):122-129 |
摘要: |
聚乳酸是一种可持续的绿色环保高分子材料,具有明显的可再生优势,已经被制成各种类型的分离膜,有望在分离和纯化领域替代难降解高分子膜,既能节约石化资源又能减少白色污染。本文分析了浸没沉淀相转化法、热致相分离法和静电纺丝法制备聚乳酸分离膜的优缺点,评价了聚乳酸膜的四种亲水改性方法,即物理共混、表面偏析、表面接枝和表面生物粘合,总结了聚乳酸被制成微滤膜、超滤膜、电纺微滤膜和致密膜等在分离与纯化领域的应用进展,最后指出聚乳酸分离膜目前存在的问题,并给出下一步改进方向,以期能为今后的相关研究工作与工业应用提供有益的参考。 |
Poly(lactic acid) separation membrane is a sustainable and green polymer membrane, and has attracted extensive attention. Firstly, three fabrication methods were summarized comprehensively, including non-solvent induced phase separation, thermally induced phase separation and electrospinning; Secondly, four hydrophilic modification approaches were also diccussed in detail, such as physical blending, surface segregation, surface grafting and surface bioadhesion; Thirdly, various applications of poly(lactic acid) separation membrane were briefly described; Finally, some useful suggestions were proposed to improve the peformance of poly(lactic acid) membrane and enlarge the application of poly(lactic acid) membrane. |
基金项目: |
河南省科技开放合作计划(编号172106000067),河南省高校青年骨干教师资助计划(编号2013GGJS-297),郑州工程技术学院青年创新基金(编号QNCXJJ2018K5) |
作者简介: |
第一作者:王宇飞(1979-),男,河南夏邑,副教授,主要从事功能材料研究,E-mail: wangyf79827@163.com 通讯作者:王保玉,E-mail: wangbaoyu2006@163.com |
参考文献: |
[1] Albertsson A.C., Varma I.K. Recent developments in ring opening polymerization of lactones for biomedical applications [J]. Biomacromolecules, 2003, 4 (6): 1466-1486. [2] Lassalle V., Ferreira M.L. PLA nano- and microparticles for drug delivery: an overview of the methods of preparation [J]. Macromol Biosci, 2007, 7 (6): 767-783. [3] Lim L.T., Auras R., Rubino M. Processing technologies for poly(lactic acid) [J]. Prog Polym Sci, 2008, 33 (8): 820-852. [4] Auras R., Harte B., Selke S. An overview of polylactides as packaging materials [J]. Macromol Biosci, 2004, 4 (9): 835-864. [5] Gupta B., Revagade N., Hilborn J. Poly(lactic acid) fiber: An overview [J]. Prog Polym Sci, 2007, 32 (4): 455-482. [6 ] 俞三传, 高从堦. 浸入沉淀相转化法制膜[J]. 膜科学与技术, 2000, 20(5): 36-41. [7] Guillen G R, Pan Y, Li M, et al. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review [J]. Ind Eng Chem Res, 2011, 50(7): 3798-3817. [8] Witte P, Dijkstra P, Vandeberg J, et al. Phase behavior of polylactides in solvent–nonsolvent mixtures [J]. J Polym Sci Pol Phys, 1996, 34(15): 2553-2568. [9] Sawalha H, Schroën K, Boom R. Polylactide films formed by immersion precipitation: Effects of additives, nonsolvent, and temperature [J]. J Appl Polym Sci, 2007, 104(2): 959–971. [10] Jiang B, Wang B, Zhang L, et al. Preparation of poly(L-lactic acid) membrane from solvent mixture via immersion precipitation [J]. Sep Sci Technol, 2016, 51(18): 2940-2947. [11] Jiang B, Wang B, Zhang L, et al. Effect of Tween 80 on morphology and performance of poly(L‐lactic acid) ultrafiltration membranes [J]. J Appl Polym Sci, 2016, 134(5): 44428. [12] Minbu H, Ochiai A, Kawase T, et al. Preparation of poly(L-lactic acid) microfiltration membranes by a nonsolvent-induced phase separation method with the aid of surfactants[J]. J Membr Sci, 2015, 479: 85-94. [13] 高爱林, 刘富, 薛立新. 生物基聚乳酸微孔膜的制备及透析性能[J]. 膜科学与技术, 2013, 33(4):28-34. [14] Xing Q, Xia D, Li R, et al. Morphology and performance control of PLLA-based porous membranes by phase separation [J]. Polymer, 2013, 54(21): 5965-5973. [15] 苏仪, 李永国, 陈翠仙, 等. 热致相分离法制备聚合物微孔膜的研究进展[J]. 膜科学与技术, 2007, 27(5):89-96. [16] Tanaka T, Lloyd D R. Formation of poly( l -lactic acid) microfiltration membranes via thermally induced phase separation [J]. J Membr Sci, 2004, 238(1–2): 65-73. [17] 刘敏, 覃王, 刘瑞来,等. 热致相分离法制备聚乳酸多孔膜[J]. 高分子材料科学与工程, 2014, 30(5): 159-162. [18] Moriya A, Maruyama T, Ohmukai Y, et al. Preparation of poly (lactic acid) hollow fiber membranes via phase separation methods [J]. J Membr Sci, 2009, 342(1-2): 307-312. [19] Tanaka T, Nishimoto T, Tsukamoto K, et al. Formation of depth filter microfiltration membranes of poly(l-lactic acid) via phase separation [J]. J Membr Sci, 2012, 396:101-109. [20] 杨山港, 叶卉, 张玉忠,等. 基于水溶性稀释剂复合相分离法制备聚乳酸分离膜的研究[J]. 膜科学与技术, 2014, 34(6):28-34. [21] 梁斌, 王建强, 潘凯,等. 静电纺丝纳米纤维在膜分离中的研究进展[J]. 高分子通报, 2013,(4): 99-108. [22] Ahmed F E, Lalia B S, Hashaikeh R. A review on electrospinning for membrane fabrication: challenges and applications [J]. Desalination, 2015, 356:15-30. [23] Li L, Hashaikeh R, Arafat H A. Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly(lactic acid) [J]. J Membr Sci, 2013, 436:57-67. [24] Casasola R, Thomas N L, Trybala A, et al. Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter [J]. Polymer, 2014, 55(18): 4728-4737. [25] Li X, Teng K, Shi J, et al. Electrospun preparation of polylactic acid nanoporous fiber membranes via thermal-nonsolvent induced phase separation [J]. J Taiwan Inst Chem E, 2016, 60(1): 636-642. [26] Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms [J]. Chem Soc Rev, 2016, 45(21): 5888-5924. [27] Zhang P, Tian R, Lv R, et al. Water-permeable polylactide blend membranes for hydrophilicity-based separation [J]. Chem Eng J, 2015, 269: 180-185. [28] Jiang B, Wang B, Zhang L, et al. Enhancing antifouling performance of poly(l‐lactide) membranes by TiO2 nanoparticles [J]. J Appl Polym Sci, 2016, 133(24) : 43542. [29] Jiang B, Wang B, Zhang L, et al. Improvement of antifouling performance of poly(l-lactic acid) membranes through incorporating polyaniline nanoparticles [J]. J Appl Polym Sci, 2016, 134(6) : 44452. [30] Shen P, Moriya A, Rajabzadeh S, et al. Improvement of the antifouling properties of poly (lactic acid) hollow fiber membranes with poly (lactic acid)–polyethylene glycol–poly (lactic acid) copolymers [J]. Desalination, 2013, 325: 37-39. [31] Zhu L, Liu F, Yu X, et al. Poly(Lactic Acid) Hemodialysis Membranes with Poly(Lactic Acid)-block-Poly(2-Hydroxyethyl Methacrylate) Copolymer As Additive: Preparation, Characterization, and Performance [J]. Acs Appl Mater Inter, 2015, 7(32): 17748-17755. [32] Bhattacharya A, Misra B N. Grafting: a versatile means to modify polymers : Techniques, factors and applications [J]. Prog Polym Sci, 2004, 29(8): 767-814. [33] Källrot M, Edlund U, Albertsson A C. Surface functionalization of degradable polymers by covalent grafting [J]. Biomaterials, 2006, 27(9): 1788-1796. [34] Xu F J, Yang X C, Li C Y, et al. Functionalized Polylactide Film Surfaces via Surface-Initiated ATRP [J]. Macromolecules, 2011, 44(7): 2371-2377. [35] Yue M, Zhou B, Jiao K, et al. Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CF4 microwave plasma treatment [J]. Appl Surf Sci, 2014, 335: 227-228. [36] Yang H C, Luo J, Lv Y, et al. Surface engineering of polymer membranes via mussel-inspired chemistry [J]. J Membr Sci, 2015, 483: 42-59. [37] Dreyer D R, Miller D J, Freeman B D, et al. Elucidating the structure of poly (dopamine) [J]. Langmuir, 2012, 28(15): 6428-6435. [38] Gao A, Liu F, Xue L. Preparation and evaluation of heparin-immobilized poly (lactic acid) (PLA) membrane for hemodialysis [J]. J Membr Sci, 2014, 452: 390-399. [39] Zhu L J, Liu F, Yu X M, et al. Surface zwitterionization of hemocompatible poly (lactic acid) membranes for hemodiafiltration [J]. J Membr Sci, 2015, 475: 469-479. [40] Tanaka T, Tsuchiya T, Takahashi H, et al. Microfiltration membrane of polymer blend of poly (l-lactic acid) and poly ([epsilon]-caprolactone) [J]. Desalination, 2006, 193(1-3): 367-374. [41] Moriya A, Shen P, Ohmukai Y, et al. Reduction of fouling on poly(lactic acid) hollow fiber membranes by blending with poly(lactic acid)–polyethylene glycol–poly(lactic acid) triblock copolymers [J]. J Membr Sci, 2012, 415–416: 712-717. [42] Xiong Z, Lin H, Zhong Y, et al. Robust superhydrophilic polylactide (PLA) membrane with TiO2 nano-particles inlayed surface for oil/water separation[J]. J Mater Chem A, 2017, 5(14): 6538-6545. [43] Zereshki S, Figoli A, Madaeni S S, et al. Pervaporation separation of methanol/methyl tert -butyl ether with poly(lactic acid) membranes[J]. J Appl Poly Sci, 2010, 118(3): 1364–1371. [44] Zereshki S, Figoli A, Madaeni S S, et al. Poly(lactic acid)/poly(vinyl pyrrolidone) blend membranes: Effect of membrane composition on pervaporation separation of ethanol/cyclohexane mixture[J]. J Membr Sci, 2010, 362(1–2): 105-112. [45] Abdellatif F H H, Babin J, Arnal-Herault C, et al. Bio-based membranes for ethyl tert-butyl ether (ETBE) bio-fuel purification by pervaporation[J]. J Membr Sci, 2017, 524: 449-459. [46] 俞学敏, 朱丽静, 高爱林,等. 血液透析膜的制备改性及组件设计[J]. 膜科学与技术, 2015, 35(4): 110-122. [47] Li J, Liu F, Yu X, et al. APTES assisted surface heparinization of polylactide porous membranes for improved hemocompatibility[J]. Rsc Adv, 2016, 6(48): 42684-42692. [48] Yu X, Xiong Z, Li J, et al. Surface PEGylation on PLA membranes via micro-swelling and crosslinking for improved biocompatibility/hemocompatibility[J]. Rsc Adv, 2015, 5(130): 107949-107956. [49] Li J, Liu F, Qin Y, et al. A novel natural hirudin facilitated anti-clotting polylactide membrane via hydrogen bonding interaction [J]. J Membr Sci, 2017, 523: 505-514. [50] Yu X, Liu F, Wang L, et al. Robust poly (lactic acid) membranes improved by polysulfone-g-poly (lactic acid) copolymers for hemodialysis [J]. Rsc Adv, 2015, 5(95): 78306-78314. [51] Xiong Z, Liu F, Lin H, et al. Covalent Bonding of Heparin on the Crystallized Poly (lactic acid) (PLA) Membrane to Improve the Hemocompability via Surface Crosslinking and Glycidyl Ether Reaction [J]. Acs Biomater Sci Eng, 2016, 2(12): 2207-2216. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号